Diffusers documentation

DreamBooth

You are viewing v0.16.0 version. A newer version v0.31.0 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

DreamBooth

DreamBooth is a method to personalize text-to-image models like Stable Diffusion given just a few (3-5) images of a subject. It allows the model to generate contextualized images of the subject in different scenes, poses, and views.

Dreambooth examples from the project's blog

Dreambooth examples from the project's blog.

This guide will show you how to finetune DreamBooth with the CompVis/stable-diffusion-v1-4 model for various GPU sizes, and with Flax. All the training scripts for DreamBooth used in this guide can be found here if you’re interested in digging deeper and seeing how things work.

Before running the scripts, make sure you install the library’s training dependencies. We also recommend installing 🧨 Diffusers from the main GitHub branch:

pip install git+https://github.com/huggingface/diffusers
pip install -U -r diffusers/examples/dreambooth/requirements.txt

xFormers is not part of the training requirements, but we recommend you install it if you can because it could make your training faster and less memory intensive.

After all the dependencies have been set up, initialize a 🤗 Accelerate environment with:

accelerate config

To setup a default 🤗 Accelerate environment without choosing any configurations:

accelerate config default

Or if your environment doesn’t support an interactive shell like a notebook, you can use:

from accelerate.utils import write_basic_config

write_basic_config()

Finally, download a few images of a dog to DreamBooth with:

from huggingface_hub import snapshot_download

local_dir = "./dog"
snapshot_download(
    "diffusers/dog-example",
    local_dir=local_dir,
    repo_type="dataset",
    ignore_patterns=".gitattributes",
)

Finetuning

DreamBooth finetuning is very sensitive to hyperparameters and easy to overfit. We recommend you take a look at our in-depth analysis with recommended settings for different subjects to help you choose the appropriate hyperparameters.

Pytorch
Hide Pytorch content

Set the INSTANCE_DIR environment variable to the path of the directory containing the dog images.

Specify the MODEL_NAME environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the ~diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path argument.

export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="./dog"
export OUTPUT_DIR="path_to_saved_model"

Then you can launch the training script (you can find the full training script here) with the following command:

accelerate launch train_dreambooth.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --instance_prompt="a photo of sks dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=1 \
  --learning_rate=5e-6 \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --max_train_steps=400
JAX
Hide JAX content

If you have access to TPUs or want to train even faster, you can try out the Flax training script. The Flax training script doesn’t support gradient checkpointing or gradient accumulation, so you’ll need a GPU with at least 30GB of memory.

Before running the script, make sure you have the requirements installed:

pip install -U -r requirements.txt

Specify the MODEL_NAME environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the ~diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path argument.

Now you can launch the training script with the following command:

export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="./dog"
export OUTPUT_DIR="path-to-save-model"

python train_dreambooth_flax.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --instance_prompt="a photo of sks dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --learning_rate=5e-6 \
  --max_train_steps=400

Finetuning with prior-preserving loss

Prior preservation is used to avoid overfitting and language-drift (check out the paper to learn more if you’re interested). For prior preservation, you use other images of the same class as part of the training process. The nice thing is that you can generate those images using the Stable Diffusion model itself! The training script will save the generated images to a local path you specify.

The authors recommend generating num_epochs * num_samples images for prior preservation. In most cases, 200-300 images work well.

Pytorch
Hide Pytorch content
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"

accelerate launch train_dreambooth.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --class_data_dir=$CLASS_DIR \
  --output_dir=$OUTPUT_DIR \
  --with_prior_preservation --prior_loss_weight=1.0 \
  --instance_prompt="a photo of sks dog" \
  --class_prompt="a photo of dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=1 \
  --learning_rate=5e-6 \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --num_class_images=200 \
  --max_train_steps=800
JAX
Hide JAX content
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"

python train_dreambooth_flax.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --class_data_dir=$CLASS_DIR \
  --output_dir=$OUTPUT_DIR \
  --with_prior_preservation --prior_loss_weight=1.0 \
  --instance_prompt="a photo of sks dog" \
  --class_prompt="a photo of dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --learning_rate=5e-6 \
  --num_class_images=200 \
  --max_train_steps=800

Finetuning the text encoder and UNet

The script also allows you to finetune the text_encoder along with the unet. In our experiments (check out the Training Stable Diffusion with DreamBooth using 🧨 Diffusers post for more details), this yields much better results, especially when generating images of faces.

Training the text encoder requires additional memory and it won’t fit on a 16GB GPU. You’ll need at least 24GB VRAM to use this option.

Pass the --train_text_encoder argument to the training script to enable finetuning the text_encoder and unet:

Pytorch
Hide Pytorch content
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"

accelerate launch train_dreambooth.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --train_text_encoder \
  --instance_data_dir=$INSTANCE_DIR \
  --class_data_dir=$CLASS_DIR \
  --output_dir=$OUTPUT_DIR \
  --with_prior_preservation --prior_loss_weight=1.0 \
  --instance_prompt="a photo of sks dog" \
  --class_prompt="a photo of dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --use_8bit_adam
  --gradient_checkpointing \
  --learning_rate=2e-6 \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --num_class_images=200 \
  --max_train_steps=800
JAX
Hide JAX content
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"

python train_dreambooth_flax.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --train_text_encoder \
  --instance_data_dir=$INSTANCE_DIR \
  --class_data_dir=$CLASS_DIR \
  --output_dir=$OUTPUT_DIR \
  --with_prior_preservation --prior_loss_weight=1.0 \
  --instance_prompt="a photo of sks dog" \
  --class_prompt="a photo of dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --learning_rate=2e-6 \
  --num_class_images=200 \
  --max_train_steps=800

Finetuning with LoRA

You can also use Low-Rank Adaptation of Large Language Models (LoRA), a fine-tuning technique for accelerating training large models, on DreamBooth. For more details, take a look at the LoRA training guide.

Saving checkpoints while training

It’s easy to overfit while training with Dreambooth, so sometimes it’s useful to save regular checkpoints during the training process. One of the intermediate checkpoints might actually work better than the final model! Pass the following argument to the training script to enable saving checkpoints:

  --checkpointing_steps=500

This saves the full training state in subfolders of your output_dir. Subfolder names begin with the prefix checkpoint-, followed by the number of steps performed so far; for example, checkpoint-1500 would be a checkpoint saved after 1500 training steps.

Resume training from a saved checkpoint

If you want to resume training from any of the saved checkpoints, you can pass the argument --resume_from_checkpoint to the script and specify the name of the checkpoint you want to use. You can also use the special string "latest" to resume from the last saved checkpoint (the one with the largest number of steps). For example, the following would resume training from the checkpoint saved after 1500 steps:

  --resume_from_checkpoint="checkpoint-1500"

This is a good opportunity to tweak some of your hyperparameters if you wish.

Inference from a saved checkpoint

Saved checkpoints are stored in a format suitable for resuming training. They not only include the model weights, but also the state of the optimizer, data loaders, and learning rate.

If you have "accelerate>=0.16.0" installed, use the following code to run inference from an intermediate checkpoint.

from diffusers import DiffusionPipeline, UNet2DConditionModel
from transformers import CLIPTextModel
import torch

# Load the pipeline with the same arguments (model, revision) that were used for training
model_id = "CompVis/stable-diffusion-v1-4"

unet = UNet2DConditionModel.from_pretrained("/sddata/dreambooth/daruma-v2-1/checkpoint-100/unet")

# if you have trained with `--args.train_text_encoder` make sure to also load the text encoder
text_encoder = CLIPTextModel.from_pretrained("/sddata/dreambooth/daruma-v2-1/checkpoint-100/text_encoder")

pipeline = DiffusionPipeline.from_pretrained(model_id, unet=unet, text_encoder=text_encoder, dtype=torch.float16)
pipeline.to("cuda")

# Perform inference, or save, or push to the hub
pipeline.save_pretrained("dreambooth-pipeline")

If you have "accelerate<0.16.0" installed, you need to convert it to an inference pipeline first:

from accelerate import Accelerator
from diffusers import DiffusionPipeline

# Load the pipeline with the same arguments (model, revision) that were used for training
model_id = "CompVis/stable-diffusion-v1-4"
pipeline = DiffusionPipeline.from_pretrained(model_id)

accelerator = Accelerator()

# Use text_encoder if `--train_text_encoder` was used for the initial training
unet, text_encoder = accelerator.prepare(pipeline.unet, pipeline.text_encoder)

# Restore state from a checkpoint path. You have to use the absolute path here.
accelerator.load_state("/sddata/dreambooth/daruma-v2-1/checkpoint-100")

# Rebuild the pipeline with the unwrapped models (assignment to .unet and .text_encoder should work too)
pipeline = DiffusionPipeline.from_pretrained(
    model_id,
    unet=accelerator.unwrap_model(unet),
    text_encoder=accelerator.unwrap_model(text_encoder),
)

# Perform inference, or save, or push to the hub
pipeline.save_pretrained("dreambooth-pipeline")

Optimizations for different GPU sizes

Depending on your hardware, there are a few different ways to optimize DreamBooth on GPUs from 16GB to just 8GB!

xFormers

xFormers is a toolbox for optimizing Transformers, and it includes a memory-efficient attention mechanism that is used in 🧨 Diffusers. You’ll need to install xFormers and then add the following argument to your training script:

  --enable_xformers_memory_efficient_attention

xFormers is not available in Flax.

Set gradients to none

Another way you can lower your memory footprint is to set the gradients to None instead of zero. However, this may change certain behaviors, so if you run into any issues, try removing this argument. Add the following argument to your training script to set the gradients to None:

  --set_grads_to_none

16GB GPU

With the help of gradient checkpointing and bitsandbytes 8-bit optimizer, it’s possible to train DreamBooth on a 16GB GPU. Make sure you have bitsandbytes installed:

pip install bitsandbytes

Then pass the --use_8bit_adam option to the training script:

export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"

accelerate launch train_dreambooth.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --class_data_dir=$CLASS_DIR \
  --output_dir=$OUTPUT_DIR \
  --with_prior_preservation --prior_loss_weight=1.0 \
  --instance_prompt="a photo of sks dog" \
  --class_prompt="a photo of dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=2 --gradient_checkpointing \
  --use_8bit_adam \
  --learning_rate=5e-6 \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --num_class_images=200 \
  --max_train_steps=800

12GB GPU

To run DreamBooth on a 12GB GPU, you’ll need to enable gradient checkpointing, the 8-bit optimizer, xFormers, and set the gradients to None:

export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"

accelerate launch train_dreambooth.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --class_data_dir=$CLASS_DIR \
  --output_dir=$OUTPUT_DIR \
  --with_prior_preservation --prior_loss_weight=1.0 \
  --instance_prompt="a photo of sks dog" \
  --class_prompt="a photo of dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=1 --gradient_checkpointing \
  --use_8bit_adam \
  --enable_xformers_memory_efficient_attention \
  --set_grads_to_none \
  --learning_rate=2e-6 \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --num_class_images=200 \
  --max_train_steps=800

8 GB GPU

For 8GB GPUs, you’ll need the help of DeepSpeed to offload some tensors from the VRAM to either the CPU or NVME, enabling training with less GPU memory.

Run the following command to configure your 🤗 Accelerate environment:

accelerate config

During configuration, confirm that you want to use DeepSpeed. Now it’s possible to train on under 8GB VRAM by combining DeepSpeed stage 2, fp16 mixed precision, and offloading the model parameters and the optimizer state to the CPU. The drawback is that this requires more system RAM, about 25 GB. See the DeepSpeed documentation for more configuration options.

You should also change the default Adam optimizer to DeepSpeed’s optimized version of Adam deepspeed.ops.adam.DeepSpeedCPUAdam for a substantial speedup. Enabling DeepSpeedCPUAdam requires your system’s CUDA toolchain version to be the same as the one installed with PyTorch.

8-bit optimizers don’t seem to be compatible with DeepSpeed at the moment.

Launch training with the following command:

export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"

accelerate launch train_dreambooth.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --instance_data_dir=$INSTANCE_DIR \
  --class_data_dir=$CLASS_DIR \
  --output_dir=$OUTPUT_DIR \
  --with_prior_preservation --prior_loss_weight=1.0 \
  --instance_prompt="a photo of sks dog" \
  --class_prompt="a photo of dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --sample_batch_size=1 \
  --gradient_accumulation_steps=1 --gradient_checkpointing \
  --learning_rate=5e-6 \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --num_class_images=200 \
  --max_train_steps=800 \
  --mixed_precision=fp16

Inference

Once you have trained a model, specify the path to where the model is saved, and use it for inference in the StableDiffusionPipeline. Make sure your prompts include the special identifier used during training (sks in the previous examples).

If you have "accelerate>=0.16.0" installed, you can use the following code to run inference from an intermediate checkpoint:

from diffusers import DiffusionPipeline
import torch

model_id = "path_to_saved_model"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

prompt = "A photo of sks dog in a bucket"
image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]

image.save("dog-bucket.png")

You may also run inference from any of the saved training checkpoints.