You are viewing v0.16.0 version.
A newer version
v0.31.0 is available.
How to use the ONNX Runtime for inference
🤗 Optimum provides a Stable Diffusion pipeline compatible with ONNX Runtime.
Installation
Install 🤗 Optimum with the following command for ONNX Runtime support:
pip install optimum["onnxruntime"]
Stable Diffusion Inference
To load an ONNX model and run inference with the ONNX Runtime, you need to replace StableDiffusionPipeline with ORTStableDiffusionPipeline
. In case you want to load
a PyTorch model and convert it to the ONNX format on-the-fly, you can set export=True
.
from optimum.onnxruntime import ORTStableDiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
pipe = ORTStableDiffusionPipeline.from_pretrained(model_id, export=True)
prompt = "a photo of an astronaut riding a horse on mars"
images = pipe(prompt).images[0]
pipe.save_pretrained("./onnx-stable-diffusion-v1-5")
If you want to export the pipeline in the ONNX format offline and later use it for inference,
you can use the optimum-cli export
command:
optimum-cli export onnx --model runwayml/stable-diffusion-v1-5 sd_v15_onnx/
Then perform inference:
from optimum.onnxruntime import ORTStableDiffusionPipeline
model_id = "sd_v15_onnx"
pipe = ORTStableDiffusionPipeline.from_pretrained(model_id)
prompt = "a photo of an astronaut riding a horse on mars"
images = pipe(prompt).images[0]
Notice that we didn’t have to specify export=True
above.
You can find more examples in optimum documentation.
Known Issues
- Generating multiple prompts in a batch seems to take too much memory. While we look into it, you may need to iterate instead of batching.