Diffusers에서의 PyTorch 2.0 가속화 지원
0.13.0
버전부터 Diffusers는 PyTorch 2.0에서의 최신 최적화를 지원합니다. 이는 다음을 포함됩니다.
- momory-efficient attention을 사용한 가속화된 트랜스포머 지원 -
xformers
같은 추가적인 dependencies 필요 없음 - 추가 성능 향상을 위한 개별 모델에 대한 컴파일 기능 torch.compile 지원
설치
가속화된 어텐션 구현과 및 torch.compile()
을 사용하기 위해, pip에서 최신 버전의 PyTorch 2.0을 설치되어 있고 diffusers 0.13.0. 버전 이상인지 확인하세요. 아래 설명된 바와 같이, PyTorch 2.0이 활성화되어 있을 때 diffusers는 최적화된 어텐션 프로세서(AttnProcessor2_0
)를 사용합니다.
pip install --upgrade torch diffusers
가속화된 트랜스포머와 torch.compile 사용하기.
가속화된 트랜스포머 구현
PyTorch 2.0에는
torch.nn.functional.scaled_dot_product_attention
함수를 통해 최적화된 memory-efficient attention의 구현이 포함되어 있습니다. 이는 입력 및 GPU 유형에 따라 여러 최적화를 자동으로 활성화합니다. 이는 xFormers의memory_efficient_attention
과 유사하지만 기본적으로 PyTorch에 내장되어 있습니다.이러한 최적화는 PyTorch 2.0이 설치되어 있고
torch.nn.functional.scaled_dot_product_attention
을 사용할 수 있는 경우 Diffusers에서 기본적으로 활성화됩니다. 이를 사용하려면torch 2.0
을 설치하고 파이프라인을 사용하기만 하면 됩니다. 예를 들어:import torch from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0]
이를 명시적으로 활성화하려면(필수는 아님) 아래와 같이 수행할 수 있습니다.
import torch from diffusers import DiffusionPipeline + from diffusers.models.attention_processor import AttnProcessor2_0 pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda") + pipe.unet.set_attn_processor(AttnProcessor2_0()) prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0]
이 실행 과정은
xFormers
만큼 빠르고 메모리적으로 효율적이어야 합니다. 자세한 내용은 벤치마크에서 확인하세요.파이프라인을 보다 deterministic으로 만들거나 파인 튜닝된 모델을 Core ML과 같은 다른 형식으로 변환해야 하는 경우 바닐라 어텐션 프로세서 (
AttnProcessor
)로 되돌릴 수 있습니다. 일반 어텐션 프로세서를 사용하려면set_default_attn_processor()
함수를 사용할 수 있습니다:import torch from diffusers import DiffusionPipeline from diffusers.models.attention_processor import AttnProcessor pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda") pipe.unet.set_default_attn_processor() prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0]
torch.compile
추가적인 속도 향상을 위해 새로운
torch.compile
기능을 사용할 수 있습니다. 파이프라인의 UNet은 일반적으로 계산 비용이 가장 크기 때문에 나머지 하위 모델(텍스트 인코더와 VAE)은 그대로 두고unet
을torch.compile
로 래핑합니다. 자세한 내용과 다른 옵션은 torch 컴파일 문서를 참조하세요.pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images
GPU 유형에 따라
compile()
은 가속화된 트랜스포머 최적화를 통해 5% - 300%의 추가 성능 향상을 얻을 수 있습니다. 그러나 컴파일은 Ampere(A100, 3090), Ada(4090) 및 Hopper(H100)와 같은 최신 GPU 아키텍처에서 더 많은 성능 향상을 가져올 수 있음을 참고하세요.컴파일은 완료하는 데 약간의 시간이 걸리므로, 파이프라인을 한 번 준비한 다음 동일한 유형의 추론 작업을 여러 번 수행해야 하는 상황에 가장 적합합니다. 다른 이미지 크기에서 컴파일된 파이프라인을 호출하면 시간적 비용이 많이 들 수 있는 컴파일 작업이 다시 트리거됩니다.
벤치마크
PyTorch 2.0의 효율적인 어텐션 구현과 torch.compile
을 사용하여 가장 많이 사용되는 5개의 파이프라인에 대해 다양한 GPU와 배치 크기에 걸쳐 포괄적인 벤치마크를 수행했습니다. 여기서는 torch.compile()
이 최적으로 활용되도록 하는 diffusers 0.17.0.dev0
을 사용했습니다.
벤치마킹 코드
Stable Diffusion text-to-image
from diffusers import DiffusionPipeline
import torch
path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
run_compile = True # Set True / False
pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
images = pipe(prompt=prompt).images
Stable Diffusion image-to-image
from diffusers import StableDiffusionImg2ImgPipeline
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
run_compile = True # Set True / False
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image).images[0]
Stable Diffusion - inpainting
from diffusers import StableDiffusionInpaintPipeline
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
path = "runwayml/stable-diffusion-inpainting"
run_compile = True # Set True / False
pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
ControlNet
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
run_compile = True # Set True / False
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
path, controlnet=controlnet, torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
pipe.controlnet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image).images[0]
IF text-to-image + upscaling
from diffusers import DiffusionPipeline
import torch
run_compile = True # Set True / False
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16)
pipe.to("cuda")
pipe_2 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16)
pipe_2.to("cuda")
pipe_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16)
pipe_3.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
pipe_2.unet.to(memory_format=torch.channels_last)
pipe_3.unet.to(memory_format=torch.channels_last)
if run_compile:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe_2.unet = torch.compile(pipe_2.unet, mode="reduce-overhead", fullgraph=True)
pipe_3.unet = torch.compile(pipe_3.unet, mode="reduce-overhead", fullgraph=True)
prompt = "the blue hulk"
prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16)
neg_prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16)
for _ in range(3):
image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images
image_2 = pipe_2(image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images
image_3 = pipe_3(prompt=prompt, image=image, noise_level=100).images
PyTorch 2.0 및 torch.compile()
로 얻을 수 있는 가능한 속도 향상에 대해, Stable Diffusion text-to-image pipeline에 대한 상대적인 속도 향상을 보여주는 차트를 5개의 서로 다른 GPU 제품군(배치 크기 4)에 대해 나타냅니다:
To give you an even better idea of how this speed-up holds for the other pipelines presented above, consider the following
plot that shows the benchmarking numbers from an A100 across three different batch sizes
(with PyTorch 2.0 nightly and torch.compile()
):
이 속도 향상이 위에 제시된 다른 파이프라인에 대해서도 어떻게 유지되는지 더 잘 이해하기 위해, 세 가지의 다른 배치 크기에 걸쳐 A100의 벤치마킹(PyTorch 2.0 nightly 및 `torch.compile() 사용) 수치를 보여주는 차트를 보입니다:
(위 차트의 벤치마크 메트릭은 초당 iteration 수(iterations/second)입니다)
그러나 투명성을 위해 모든 벤치마킹 수치를 공개합니다!
다음 표들에서는, 초당 처리되는 iteration 수 측면에서의 결과를 보여줍니다.
A100 (batch size: 1)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 21.66 | 23.13 | 44.03 | 49.74 |
SD - img2img | 21.81 | 22.40 | 43.92 | 46.32 |
SD - inpaint | 22.24 | 23.23 | 43.76 | 49.25 |
SD - controlnet | 15.02 | 15.82 | 32.13 | 36.08 |
IF | 20.21 / 13.84 / 24.00 | 20.12 / 13.70 / 24.03 | ❌ | 97.34 / 27.23 / 111.66 |
A100 (batch size: 4)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 11.6 | 13.12 | 14.62 | 17.27 |
SD - img2img | 11.47 | 13.06 | 14.66 | 17.25 |
SD - inpaint | 11.67 | 13.31 | 14.88 | 17.48 |
SD - controlnet | 8.28 | 9.38 | 10.51 | 12.41 |
IF | 25.02 | 18.04 | ❌ | 48.47 |
A100 (batch size: 16)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 3.04 | 3.6 | 3.83 | 4.68 |
SD - img2img | 2.98 | 3.58 | 3.83 | 4.67 |
SD - inpaint | 3.04 | 3.66 | 3.9 | 4.76 |
SD - controlnet | 2.15 | 2.58 | 2.74 | 3.35 |
IF | 8.78 | 9.82 | ❌ | 16.77 |
V100 (batch size: 1)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 18.99 | 19.14 | 20.95 | 22.17 |
SD - img2img | 18.56 | 19.18 | 20.95 | 22.11 |
SD - inpaint | 19.14 | 19.06 | 21.08 | 22.20 |
SD - controlnet | 13.48 | 13.93 | 15.18 | 15.88 |
IF | 20.01 / 9.08 / 23.34 | 19.79 / 8.98 / 24.10 | ❌ | 55.75 / 11.57 / 57.67 |
V100 (batch size: 4)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 5.96 | 5.89 | 6.83 | 6.86 |
SD - img2img | 5.90 | 5.91 | 6.81 | 6.82 |
SD - inpaint | 5.99 | 6.03 | 6.93 | 6.95 |
SD - controlnet | 4.26 | 4.29 | 4.92 | 4.93 |
IF | 15.41 | 14.76 | ❌ | 22.95 |
V100 (batch size: 16)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 1.66 | 1.66 | 1.92 | 1.90 |
SD - img2img | 1.65 | 1.65 | 1.91 | 1.89 |
SD - inpaint | 1.69 | 1.69 | 1.95 | 1.93 |
SD - controlnet | 1.19 | 1.19 | OOM after warmup | 1.36 |
IF | 5.43 | 5.29 | ❌ | 7.06 |
T4 (batch size: 1)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 6.9 | 6.95 | 7.3 | 7.56 |
SD - img2img | 6.84 | 6.99 | 7.04 | 7.55 |
SD - inpaint | 6.91 | 6.7 | 7.01 | 7.37 |
SD - controlnet | 4.89 | 4.86 | 5.35 | 5.48 |
IF | 17.42 / 2.47 / 18.52 | 16.96 / 2.45 / 18.69 | ❌ | 24.63 / 2.47 / 23.39 |
T4 (batch size: 4)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 1.79 | 1.79 | 2.03 | 1.99 |
SD - img2img | 1.77 | 1.77 | 2.05 | 2.04 |
SD - inpaint | 1.81 | 1.82 | 2.09 | 2.09 |
SD - controlnet | 1.34 | 1.27 | 1.47 | 1.46 |
IF | 5.79 | 5.61 | ❌ | 7.39 |
T4 (batch size: 16)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 2.34s | 2.30s | OOM after 2nd iteration | 1.99s |
SD - img2img | 2.35s | 2.31s | OOM after warmup | 2.00s |
SD - inpaint | 2.30s | 2.26s | OOM after 2nd iteration | 1.95s |
SD - controlnet | OOM after 2nd iteration | OOM after 2nd iteration | OOM after warmup | OOM after warmup |
IF * | 1.44 | 1.44 | ❌ | 1.94 |
RTX 3090 (batch size: 1)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 22.56 | 22.84 | 23.84 | 25.69 |
SD - img2img | 22.25 | 22.61 | 24.1 | 25.83 |
SD - inpaint | 22.22 | 22.54 | 24.26 | 26.02 |
SD - controlnet | 16.03 | 16.33 | 17.38 | 18.56 |
IF | 27.08 / 9.07 / 31.23 | 26.75 / 8.92 / 31.47 | ❌ | 68.08 / 11.16 / 65.29 |
RTX 3090 (batch size: 4)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 6.46 | 6.35 | 7.29 | 7.3 |
SD - img2img | 6.33 | 6.27 | 7.31 | 7.26 |
SD - inpaint | 6.47 | 6.4 | 7.44 | 7.39 |
SD - controlnet | 4.59 | 4.54 | 5.27 | 5.26 |
IF | 16.81 | 16.62 | ❌ | 21.57 |
RTX 3090 (batch size: 16)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 1.7 | 1.69 | 1.93 | 1.91 |
SD - img2img | 1.68 | 1.67 | 1.93 | 1.9 |
SD - inpaint | 1.72 | 1.71 | 1.97 | 1.94 |
SD - controlnet | 1.23 | 1.22 | 1.4 | 1.38 |
IF | 5.01 | 5.00 | ❌ | 6.33 |
RTX 4090 (batch size: 1)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 40.5 | 41.89 | 44.65 | 49.81 |
SD - img2img | 40.39 | 41.95 | 44.46 | 49.8 |
SD - inpaint | 40.51 | 41.88 | 44.58 | 49.72 |
SD - controlnet | 29.27 | 30.29 | 32.26 | 36.03 |
IF | 69.71 / 18.78 / 85.49 | 69.13 / 18.80 / 85.56 | ❌ | 124.60 / 26.37 / 138.79 |
RTX 4090 (batch size: 4)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 12.62 | 12.84 | 15.32 | 15.59 |
SD - img2img | 12.61 | 12,.79 | 15.35 | 15.66 |
SD - inpaint | 12.65 | 12.81 | 15.3 | 15.58 |
SD - controlnet | 9.1 | 9.25 | 11.03 | 11.22 |
IF | 31.88 | 31.14 | ❌ | 43.92 |
RTX 4090 (batch size: 16)
Pipeline | torch 2.0 - no compile | torch nightly - no compile | torch 2.0 - compile | torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 3.17 | 3.2 | 3.84 | 3.85 |
SD - img2img | 3.16 | 3.2 | 3.84 | 3.85 |
SD - inpaint | 3.17 | 3.2 | 3.85 | 3.85 |
SD - controlnet | 2.23 | 2.3 | 2.7 | 2.75 |
IF | 9.26 | 9.2 | ❌ | 13.31 |
참고
- Follow this PR for more details on the environment used for conducting the benchmarks.
- For the IF pipeline and batch sizes > 1, we only used a batch size of >1 in the first IF pipeline for text-to-image generation and NOT for upscaling. So, that means the two upscaling pipelines received a batch size of 1.
Thanks to Horace He from the PyTorch team for their support in improving our support of torch.compile()
in Diffusers.
- 벤치마크 수행에 사용된 환경에 대한 자세한 내용은 이 PR을 참조하세요.
- IF 파이프라인와 배치 크기 > 1의 경우 첫 번째 IF 파이프라인에서 text-to-image 생성을 위한 배치 크기 > 1만 사용했으며 업스케일링에는 사용하지 않았습니다. 즉, 두 개의 업스케일링 파이프라인이 배치 크기 1임을 의미합니다.
Diffusers에서 torch.compile()
지원을 개선하는 데 도움을 준 PyTorch 팀의 Horace He에게 감사드립니다.