Transformers documentation

Allenamento distribuito con 🤗 Accelerate

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.46.2).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Allenamento distribuito con 🤗 Accelerate

La parallelizzazione è emersa come strategia per allenare modelli sempre più grandi su hardware limitato e accelerarne la velocità di allenamento di diversi ordini di magnitudine. In Hugging Face, abbiamo creato la libreria 🤗 Accelerate per aiutarti ad allenare in modo semplice un modello 🤗 Transformers su qualsiasi tipo di configurazione distribuita, sia che si tratti di più GPU su una sola macchina o di più GPU su più macchine. In questo tutorial, imparerai come personalizzare il training loop nativo di PyTorch per consentire l’addestramento in un ambiente distribuito.

Configurazione

Inizia installando 🤗 Accelerate:

pip install accelerate

Poi importa e crea un oggetto Accelerator. Accelerator rileverà automaticamente il tuo setup distribuito e inizializzerà tutte le componenti necessarie per l’allenamento. Non dovrai allocare esplicitamente il tuo modello su un device.

>>> from accelerate import Accelerator

>>> accelerator = Accelerator()

Preparati ad accelerare

Il prossimo passo è quello di passare tutti gli oggetti rilevanti per l’allenamento al metodo prepare. Questo include i tuoi DataLoaders per l’allenamento e per la valutazione, un modello e un ottimizzatore:

>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
...     train_dataloader, eval_dataloader, model, optimizer
... )

Backward

Infine, sostituisci il tipico metodo loss.backward() nel tuo loop di allenamento con il metodo backward di 🤗 Accelerate:

>>> for epoch in range(num_epochs):
...     for batch in train_dataloader:
...         outputs = model(**batch)
...         loss = outputs.loss
...         accelerator.backward(loss)

...         optimizer.step()
...         lr_scheduler.step()
...         optimizer.zero_grad()
...         progress_bar.update(1)

Come puoi vedere nel seguente codice, hai solo bisogno di aggiungere quattro righe in più di codice al tuo training loop per abilitare l’allenamento distribuito!

+ from accelerate import Accelerator
  from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler

+ accelerator = Accelerator()

  model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
  optimizer = AdamW(model.parameters(), lr=3e-5)

- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model.to(device)

+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
+     train_dataloader, eval_dataloader, model, optimizer
+ )

  num_epochs = 3
  num_training_steps = num_epochs * len(train_dataloader)
  lr_scheduler = get_scheduler(
      "linear",
      optimizer=optimizer,
      num_warmup_steps=0,
      num_training_steps=num_training_steps
  )

  progress_bar = tqdm(range(num_training_steps))

  model.train()
  for epoch in range(num_epochs):
      for batch in train_dataloader:
-         batch = {k: v.to(device) for k, v in batch.items()}
          outputs = model(**batch)
          loss = outputs.loss
-         loss.backward()
+         accelerator.backward(loss)

          optimizer.step()
          lr_scheduler.step()
          optimizer.zero_grad()
          progress_bar.update(1)

Allenamento

Una volta che hai aggiunto le righe di codice rilevanti, lancia il tuo allenamento in uno script o in un notebook come Colaboratory.

Allenamento con uno script

Se stai eseguendo il tuo allenamento da uno script, esegui il comando seguente per creare e salvare un file di configurazione:

accelerate config

Poi lancia il tuo allenamento con:

accelerate launch train.py

Allenamento con un notebook

La libreria 🤗 Accelerate può anche essere utilizzata in un notebook se stai pianificando di utilizzare le TPU di Colaboratory. Inserisci tutto il codice legato all’allenamento in una funzione, e passala al notebook_launcher:

>>> from accelerate import notebook_launcher

>>> notebook_launcher(training_function)

Per maggiori informazioni relative a 🤗 Accelerate e le sue numerose funzionalità, fai riferimento alla documentazione.

< > Update on GitHub