LLaVA-NeXT
Overview
The LLaVA-NeXT model was proposed in LLaVA-NeXT: Improved reasoning, OCR, and world knowledge by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee. LLaVa-NeXT (also called LLaVa-1.6) improves upon LLaVa by increasing the input image resolution and training on an improved visual instruction tuning dataset to improve OCR and common sense reasoning.
The introduction from the blog is the following:
*In October 2023, we released LLaVA-1.5 with a simple and efficient design along with great performance on a benchmark suite of 12 datasets. It has since served as the foundation of many comprehensive studies of data, model, and capabilities of large multimodal models (LMM), and has enabled various new applications.
Today, we are thrilled to present LLaVA-NeXT, with improved reasoning, OCR, and world knowledge. LLaVA-NeXT even exceeds Gemini Pro on several benchmarks.
Compared with LLaVA-1.5, LLaVA-NeXT has several improvements:
Increasing the input image resolution to 4x more pixels. This allows it to grasp more visual details. It supports three aspect ratios, up to 672x672, 336x1344, 1344x336 resolution. Better visual reasoning and OCR capability with an improved visual instruction tuning data mixture. Better visual conversation for more scenarios, covering different applications. Better world knowledge and logical reasoning. Efficient deployment and inference with SGLang. Along with performance improvements, LLaVA-NeXT maintains the minimalist design and data efficiency of LLaVA-1.5. It re-uses the pretrained connector of LLaVA-1.5, and still uses less than 1M visual instruction tuning samples. The largest 34B variant finishes training in ~1 day with 32 A100s.*
LLaVa-NeXT incorporates a higher input resolution by encoding various patches of the input image. Taken from the original paper.This model was contributed by nielsr. The original code can be found here.
Usage tips
- We advise users to use
padding_side="left"
when computing batched generation as it leads to more accurate results. Simply make sure to callprocessor.tokenizer.padding_side = "left"
before generating.
- Llava-Next uses different number of patches for images and thus has to pad the inputs inside modeling code, aside from the padding done when processing the inputs. The default setting is “left-padding” if model is in
eval()
mode, otherwise “right-padding”.
[!NOTE] LLaVA models after release v4.46 will raise warnings about adding
processor.patch_size = {{patch_size}}
,processor.num_additional_image_tokens = {{num_additional_image_tokens}}
and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}. It is strongly recommended to add the attributes to the processor if you own the model checkpoint, or open a PR if it is not owned by you. Adding these attributes means that LLaVA will try to infer the number of image tokens required per image and expand the text with as many
<image>placeholders as there will be tokens. Usually it is around 500 tokens per image, so make sure that the text is not truncated as otherwise there will be failure when merging the embeddings. The attributes can be obtained from model config, as
model.config.vision_config.patch_sizeor
model.config.vision_feature_select_strategy. The
num_additional_image_tokensshould be
1if the vision backbone adds a CLS token or
0` if nothing extra is added to the vision patches.
- Note that each checkpoint has been trained with a specific prompt format, depending on which large language model (LLM) was used. You can use the processor’s
apply_chat_template
to format your prompts correctly. For that you have to construct a conversation history, passing a plain string will not format your prompt. Each message in the conversation history for chat templates is a dictionary with keys “role” and “content”. The “content” should be a list of dictionaries, for “text” and “image” modalities. Below is an example of how to do that and the list of formats accepted by each checkpoint.
We will use llava-v1.6-mistral-7b-hf and a conversation history of text and image. Each content field has to be a list of dicts, as follows:
from transformers import LlavaNextProcessor
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What’s shown in this image?"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "This image shows a red stop sign."},]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe the image in more details."},
],
},
]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Note that the template simply formats your prompt, you still have to tokenize it and obtain pixel values for your images
print(text_prompt)
>>> "[INST] <image>\nWhat's shown in this image? [/INST] This image shows a red stop sign. [INST] Describe the image in more details. [/INST]"
- If you want to construct a chat prompt yourself, below is a list of possible formats . llava-v1.6-mistral-7b-hf requires the following format:
"[INST] <image>\nWhat is shown in this image? [/INST]"
llava-v1.6-vicuna-7b-hf and llava-v1.6-vicuna-13b-hf require the following format:
"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:"
llava-v1.6-34b-hf requires the following format:
"<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
llama3-llava-next-8b-hf requires the following format:
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat is shown in this image?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
llava-next-72b-hf and llava-next-110b-hf require the following format:
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|>\n<|im_start|>assistant\n"
Usage example
Single image inference
Here’s how to load the model and perform inference in half-precision (torch.float16
):
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch
from PIL import Image
import requests
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
model.to("cuda:0")
# prepare image and text prompt, using the appropriate prompt template
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(image, prompt, return_tensors="pt").to("cuda:0")
# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
Multi image inference
LLaVa-Next can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). Here is how you can do it:
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
# Load the model in half-precision
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, device_map="auto")
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
# Get three different images
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image_stop = Image.open(requests.get(url, stream=True).raw)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_cats = Image.open(requests.get(url, stream=True).raw)
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
image_snowman = Image.open(requests.get(url, stream=True).raw)
# Prepare a batch of two prompts, where the first one is a multi-turn conversation and the second is not
conversation_1 = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "There is a red stop sign in the image."},
],
},
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What about this image? How many cats do you see?"},
],
},
]
conversation_2 = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
prompts = [prompt_1, prompt_2]
# We can simply feed images in the order they have to be used in the text prompt
# Each "<image>" token uses one image leaving the next for the subsequent "<image>" tokens
inputs = processor(images=[image_stop, image_cats, image_snowman], text=prompts, padding=True, return_tensors="pt").to(model.device)
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=30)
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
Model optimization
Quantization using Bitsandbytes
The model can be loaded in 8 or 4 bits, greatly reducing the memory requirements while maintaining the performance of the original model. First make sure to install bitsandbytes, pip install bitsandbytes
, and to have access to a GPU/accelerator that is supported by the library.
bitsandbytes is being refactored to support multiple backends beyond CUDA. Currently, ROCm (AMD GPU) and Intel CPU implementations are mature, with Intel XPU in progress and Apple Silicon support expected by Q4/Q1. For installation instructions and the latest backend updates, visit this link.
We value your feedback to help identify bugs before the full release! Check out these docs for more details and feedback links.
Simply change the snippet above with:
from transformers import AutoModelForImageTextToText, BitsAndBytesConfig
# specify how to quantize the model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quantization_config, device_map="auto")
Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:
from transformers import AutoModelForImageTextToText
model = AutoModelForImageTextToText.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
use_flash_attention_2=True
).to(0)
LlavaNextConfig
class transformers.LlavaNextConfig
< source >( vision_config = None text_config = None ignore_index = -100 image_token_index = 32000 projector_hidden_act = 'gelu' vision_feature_select_strategy = 'default' vision_feature_layer = -2 image_grid_pinpoints = None tie_word_embeddings = False image_seq_length = 576 multimodal_projector_bias = True **kwargs )
Parameters
- vision_config (
Union[AutoConfig, dict]
, optional, defaults toCLIPVisionConfig
) — The config object or dictionary of the vision backbone. - text_config (
Union[AutoConfig, dict]
, optional, defaults toLlamaConfig
) — The config object or dictionary of the text backbone. - ignore_index (
int
, optional, defaults to -100) — The ignore index for the loss function. - image_token_index (
int
, optional, defaults to 32000) — The image token index to encode the image prompt. - projector_hidden_act (
str
, optional, defaults to"gelu"
) — The activation function used by the multimodal projector. - vision_feature_select_strategy (
str
, optional, defaults to"default"
) — The feature selection strategy used to select the vision feature from the vision backbone. Can be one of"default"
or"full"
. If"default"
, the CLS token is removed from the vision features. If"full"
, the full vision features are used. - vision_feature_layer (
Union[int, List[int]]
, optional, defaults to -2) — The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. - image_grid_pinpoints (
List
, optional, defaults to[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
) — A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list of the form(height, width)
. - tie_word_embeddings (
bool
, optional, defaults toFalse
) — Whether the model’s input and output word embeddings should be tied. - image_seq_length (
int
, optional, defaults to 576) — Sequence length of one image embedding. - multimodal_projector_bias (
bool
, optional, defaults toTrue
) — Whether to use bias in the multimodal projector.
This is the configuration class to store the configuration of a LlavaNextForConditionalGeneration. It is used to instantiate an Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the llava-hf/llava-v1.6-mistral-7b-hf model.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import LlavaNextForConditionalGeneration, LlavaNextConfig, CLIPVisionConfig, LlamaConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> # Initializing a Llava-Next llava-hf/llava-v1.6-mistral-7b-hf style configuration
>>> configuration = LlavaNextConfig(vision_config, text_config)
>>> # Initializing a model from the llava-hf/llava-v1.6-mistral-7b-hf style configuration
>>> model = LlavaNextForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
LlavaNextImageProcessor
class transformers.LlavaNextImageProcessor
< source >( do_resize: bool = True size: typing.Dict[str, int] = None image_grid_pinpoints: typing.List = None resample: Resampling = <Resampling.BICUBIC: 3> do_center_crop: bool = True crop_size: typing.Dict[str, int] = None do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None do_pad: typing.Optional[bool] = True do_convert_rgb: bool = True **kwargs )
Parameters
- do_resize (
bool
, optional, defaults toTrue
) — Whether to resize the image’s (height, width) dimensions to the specifiedsize
. Can be overridden bydo_resize
in thepreprocess
method. - size (
Dict[str, int]
optional, defaults to{"shortest_edge" -- 224}
): Size of the image after resizing. The shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio. Can be overridden bysize
in thepreprocess
method. - image_grid_pinpoints (
List
optional, defaults to[[672, 336], [336, 672], [672, 672], [336, 1008], [1008, 336]]
) — A list of possible resolutions to use for processing high resolution images. The best resolution is selected based on the original size of the image. Can be overridden byimage_grid_pinpoints
in thepreprocess
method. - resample (
PILImageResampling
, optional, defaults toResampling.BICUBIC
) — Resampling filter to use if resizing the image. Can be overridden byresample
in thepreprocess
method. - do_center_crop (
bool
, optional, defaults toTrue
) — Whether to center crop the image to the specifiedcrop_size
. Can be overridden bydo_center_crop
in thepreprocess
method. - crop_size (
Dict[str, int]
optional, defaults to 224) — Size of the output image after applyingcenter_crop
. Can be overridden bycrop_size
in thepreprocess
method. - do_rescale (
bool
, optional, defaults toTrue
) — Whether to rescale the image by the specified scalerescale_factor
. Can be overridden bydo_rescale
in thepreprocess
method. - rescale_factor (
int
orfloat
, optional, defaults to1/255
) — Scale factor to use if rescaling the image. Can be overridden byrescale_factor
in thepreprocess
method. - do_normalize (
bool
, optional, defaults toTrue
) — Whether to normalize the image. Can be overridden bydo_normalize
in thepreprocess
method. - image_mean (
float
orList[float]
, optional, defaults to[0.48145466, 0.4578275, 0.40821073]
) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by theimage_mean
parameter in thepreprocess
method. - image_std (
float
orList[float]
, optional, defaults to[0.26862954, 0.26130258, 0.27577711]
) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by theimage_std
parameter in thepreprocess
method. Can be overridden by theimage_std
parameter in thepreprocess
method. - do_pad (
bool
, optional, defaults toTrue
) — Whether to pad the image. IfTrue
, will pad the patch dimension of the images in the batch to the largest number of patches in the batch. Padding will be applied to the bottom and right with zeros. - do_convert_rgb (
bool
, optional, defaults toTrue
) — Whether to convert the image to RGB.
Constructs a LLaVa-NeXT image processor. Based on CLIPImageProcessor with incorporation of additional techniques for processing high resolution images as explained in the LLaVa paper.
preprocess
< source >( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] do_resize: bool = None size: typing.Dict[str, int] = None image_grid_pinpoints: typing.List = None resample: Resampling = None do_center_crop: bool = None crop_size: int = None do_rescale: bool = None rescale_factor: float = None do_normalize: bool = None image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None do_pad: typing.Optional[bool] = None do_convert_rgb: bool = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Optional[transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None )
Parameters
- images (
ImageInput
) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, setdo_rescale=False
. - do_resize (
bool
, optional, defaults toself.do_resize
) — Whether to resize the image. - size (
Dict[str, int]
, optional, defaults toself.size
) — Size of the image after resizing. Shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio. - image_grid_pinpoints (
List
optional, defaults toself.image_grid_pinpoints
) — A list of possible resolutions to use for processing high resolution images. The best resolution is selected based on the original size of the image. - resample (
int
, optional, defaults toself.resample
) — Resampling filter to use if resizing the image. This can be one of the enumPILImageResampling
. Only has an effect ifdo_resize
is set toTrue
. - do_center_crop (
bool
, optional, defaults toself.do_center_crop
) — Whether to center crop the image. - crop_size (
Dict[str, int]
, optional, defaults toself.crop_size
) — Size of the center crop. Only has an effect ifdo_center_crop
is set toTrue
. - do_rescale (
bool
, optional, defaults toself.do_rescale
) — Whether to rescale the image. - rescale_factor (
float
, optional, defaults toself.rescale_factor
) — Rescale factor to rescale the image by ifdo_rescale
is set toTrue
. - do_normalize (
bool
, optional, defaults toself.do_normalize
) — Whether to normalize the image. - image_mean (
float
orList[float]
, optional, defaults toself.image_mean
) — Image mean to use for normalization. Only has an effect ifdo_normalize
is set toTrue
. - image_std (
float
orList[float]
, optional, defaults toself.image_std
) — Image standard deviation to use for normalization. Only has an effect ifdo_normalize
is set toTrue
. - do_pad (
bool
, optional, defaults toself.do_pad
) — Whether to pad the image. IfTrue
, will pad the patch dimension of the images in the batch to the largest number of patches in the batch. Padding will be applied to the bottom and right with zeros. - do_convert_rgb (
bool
, optional, defaults toself.do_convert_rgb
) — Whether to convert the image to RGB. - return_tensors (
str
orTensorType
, optional) — The type of tensors to return. Can be one of:- Unset: Return a list of
np.ndarray
. TensorType.TENSORFLOW
or'tf'
: Return a batch of typetf.Tensor
.TensorType.PYTORCH
or'pt'
: Return a batch of typetorch.Tensor
.TensorType.NUMPY
or'np'
: Return a batch of typenp.ndarray
.TensorType.JAX
or'jax'
: Return a batch of typejax.numpy.ndarray
.
- Unset: Return a list of
- data_format (
ChannelDimension
orstr
, optional, defaults toChannelDimension.FIRST
) — The channel dimension format for the output image. Can be one of:"channels_first"
orChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
orChannelDimension.LAST
: image in (height, width, num_channels) format.- Unset: Use the channel dimension format of the input image.
- input_data_format (
ChannelDimension
orstr
, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:"channels_first"
orChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
orChannelDimension.LAST
: image in (height, width, num_channels) format."none"
orChannelDimension.NONE
: image in (height, width) format.
LlavaNextProcessor
class transformers.LlavaNextProcessor
< source >( image_processor = None tokenizer = None patch_size = None vision_feature_select_strategy = None chat_template = None image_token = '<image>' num_additional_image_tokens = 0 **kwargs )
Parameters
- image_processor (LlavaNextImageProcessor, optional) — The image processor is a required input.
- tokenizer (LlamaTokenizerFast, optional) — The tokenizer is a required input.
- patch_size (
int
, optional) — Patch size from the vision tower. - vision_feature_select_strategy (
str
, optional) — The feature selection strategy used to select the vision feature from the vision backbone. Shoudl be same as in model’s config - chat_template (
str
, optional) — A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. - image_token (
str
, optional, defaults to"<image>"
) — Special token used to denote image location. - num_additional_image_tokens (
int
, optional, defaults to 0) — Number of additional tokens added to the image embeddings, such as CLS (+1). If the backbone has no CLS or other extra tokens appended, no need to set this arg.
Constructs a LLaVa-NeXT processor which wraps a LLaVa-NeXT image processor and a LLaMa tokenizer into a single processor.
LlavaNextProcessor offers all the functionalities of LlavaNextImageProcessor and LlamaTokenizerFast. See the
__call__()
and decode() for more information.
This method forwards all its arguments to LlamaTokenizerFast’s batch_decode(). Please refer to the docstring of this method for more information.
This method forwards all its arguments to LlamaTokenizerFast’s decode(). Please refer to the docstring of this method for more information.
LlavaNextForConditionalGeneration
class transformers.LlavaNextForConditionalGeneration
< source >( config: LlavaNextConfig )
Parameters
- config (LlavaNextConfig or
LlavaNextVisionConfig
) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The LLAVA-NeXT model which consists of a vision backbone and a language model. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: LongTensor = None pixel_values: FloatTensor = None image_sizes: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None vision_feature_layer: typing.Union[int, typing.List[int], NoneType] = None vision_feature_select_strategy: typing.Optional[str] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 ) → transformers.models.llava_next.modeling_llava_next.LlavaNextCausalLMOutputWithPast
or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- pixel_values (
torch.FloatTensor
of shape `(batch_size, num_channels, image_size, image_size)) — The tensors corresponding to the input images. Pixel values can be obtained using AutoImageProcessor. See LlavaNextImageProcessor.call() for details. LlavaProcessor uses LlavaNextImageProcessor for processing images. - image_sizes (
torch.LongTensor
of shape(batch_size, 2)
, optional) — The sizes of the images in the batch, being (height, width) for each image. - attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If
past_key_values
is used, optionally only the lastdecoder_input_ids
have to be input (seepast_key_values
).If you want to change padding behavior, you should read
modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more information on the default strategy.- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]
. What are position IDs? - past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
. - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - vision_feature_layer (
Union[int, List[int]], *optional*, defaults to -2
) — The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. - vision_feature_select_strategy (
str
, optional, defaults to"default"
) — The feature selection strategy used to select the vision feature from the vision backbone. Can be one of"default"
or"full"
. If"default"
, the CLS token is removed from the vision features. If"full"
, the full vision features are used. - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - Args —
labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional): Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]
or -100 (seeinput_ids
docstring). Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
.logits_to_keep (
int
ortorch.Tensor
, optional): If anint
, compute logits for the lastlogits_to_keep
tokens. If0
, calculate logits for allinput_ids
(special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If atorch.Tensor
, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns
transformers.models.llava_next.modeling_llava_next.LlavaNextCausalLMOutputWithPast
or tuple(torch.FloatTensor)
A transformers.models.llava_next.modeling_llava_next.LlavaNextCausalLMOutputWithPast
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (LlavaNextConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
)Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
image_hidden_states (
torch.FloatTensor
, optional) — Atorch.FloatTensor
of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
The LlavaNextForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration
>>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"