RoBERTa
Overview
The RoBERTa model was proposed in RoBERTa: A Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Googleβs BERT model released in 2018.
It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with much larger mini-batches and learning rates.
The abstract from the paper is the following:
Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise questions about the source of recently reported improvements. We release our models and code.
This model was contributed by julien-c. The original code can be found here.
Usage tips
This implementation is the same as BertModel with a minor tweak to the embeddings, as well as a setup for RoBERTa pretrained models.
RoBERTa has the same architecture as BERT but uses a byte-level BPE as a tokenizer (same as GPT-2) and uses a different pretraining scheme.
RoBERTa doesnβt have
token_type_ids
, so you donβt need to indicate which token belongs to which segment. Just separate your segments with the separation tokentokenizer.sep_token
(or</s>
).RoBERTa is similar to BERT but with better pretraining techniques:
- Dynamic masking: tokens are masked differently at each epoch, whereas BERT does it once and for all.
- Sentence packing: Sentences are packed together to reach 512 tokens (so the sentences are in an order that may span several documents).
- Larger batches: Training uses larger batches.
- Byte-level BPE vocabulary: Uses BPE with bytes as a subunit instead of characters, accommodating Unicode characters.
CamemBERT is a wrapper around RoBERTa. Refer to its model page for usage examples.
Resources
A list of official Hugging Face and community (indicated by π) resources to help you get started with RoBERTa. If youβre interested in submitting a resource to be included here, please feel free to open a Pull Request and weβll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
- A blog on Getting Started with Sentiment Analysis on Twitter using RoBERTa and the Inference API.
- A blog on Opinion Classification with Kili and Hugging Face AutoTrain using RoBERTa.
- A notebook on how to finetune RoBERTa for sentiment analysis. π
- RobertaForSequenceClassification is supported by this example script and notebook.
- TFRobertaForSequenceClassification is supported by this example script and notebook.
- FlaxRobertaForSequenceClassification is supported by this example script and notebook.
- Text classification task guide
- RobertaForTokenClassification is supported by this example script and notebook.
- TFRobertaForTokenClassification is supported by this example script and notebook.
- FlaxRobertaForTokenClassification is supported by this example script.
- Token classification chapter of the π€ Hugging Face Course.
- Token classification task guide
- A blog on How to train a new language model from scratch using Transformers and Tokenizers with RoBERTa.
- RobertaForMaskedLM is supported by this example script and notebook.
- TFRobertaForMaskedLM is supported by this example script and notebook.
- FlaxRobertaForMaskedLM is supported by this example script and notebook.
- Masked language modeling chapter of the π€ Hugging Face Course.
- Masked language modeling task guide
- A blog on Accelerated Inference with Optimum and Transformers Pipelines with RoBERTa for question answering.
- RobertaForQuestionAnswering is supported by this example script and notebook.
- TFRobertaForQuestionAnswering is supported by this example script and notebook.
- FlaxRobertaForQuestionAnswering is supported by this example script.
- Question answering chapter of the π€ Hugging Face Course.
- Question answering task guide
Multiple choice
- RobertaForMultipleChoice is supported by this example script and notebook.
- TFRobertaForMultipleChoice is supported by this example script and notebook.
- Multiple choice task guide
RobertaConfig
class transformers.RobertaConfig
< source >( vocab_size = 50265 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )
Parameters
- vocab_size (
int
, optional, defaults to 50265) — Vocabulary size of the RoBERTa model. Defines the number of different tokens that can be represented by theinputs_ids
passed when calling RobertaModel or TFRobertaModel. - hidden_size (
int
, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer. - num_hidden_layers (
int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder. - intermediate_size (
int
, optional, defaults to 3072) — Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder. - hidden_act (
str
orCallable
, optional, defaults to"gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"silu"
and"gelu_new"
are supported. - hidden_dropout_prob (
float
, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. - attention_probs_dropout_prob (
float
, optional, defaults to 0.1) — The dropout ratio for the attention probabilities. - max_position_embeddings (
int
, optional, defaults to 512) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). - type_vocab_size (
int
, optional, defaults to 2) — The vocabulary size of thetoken_type_ids
passed when calling RobertaModel or TFRobertaModel. - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - layer_norm_eps (
float
, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers. - position_embedding_type (
str
, optional, defaults to"absolute"
) — Type of position embedding. Choose one of"absolute"
,"relative_key"
,"relative_key_query"
. For positional embeddings use"absolute"
. For more information on"relative_key"
, please refer to Self-Attention with Relative Position Representations (Shaw et al.). For more information on"relative_key_query"
, please refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.). - is_decoder (
bool
, optional, defaults toFalse
) — Whether the model is used as a decoder or not. IfFalse
, the model is used as an encoder. - use_cache (
bool
, optional, defaults toTrue
) — Whether or not the model should return the last key/values attentions (not used by all models). Only relevant ifconfig.is_decoder=True
. - classifier_dropout (
float
, optional) — The dropout ratio for the classification head.
This is the configuration class to store the configuration of a RobertaModel or a TFRobertaModel. It is used to instantiate a RoBERTa model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa FacebookAI/roberta-base architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Examples:
>>> from transformers import RobertaConfig, RobertaModel
>>> # Initializing a RoBERTa configuration
>>> configuration = RobertaConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = RobertaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
RobertaTokenizer
class transformers.RobertaTokenizer
< source >( vocab_file merges_file errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False **kwargs )
Parameters
- vocab_file (
str
) — Path to the vocabulary file. - merges_file (
str
) — Path to the merges file. - errors (
str
, optional, defaults to"replace"
) — Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information. - bos_token (
str
, optional, defaults to"<s>"
) — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the
cls_token
. - eos_token (
str
, optional, defaults to"</s>"
) — The end of sequence token.When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the
sep_token
. - sep_token (
str
, optional, defaults to"</s>"
) — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. - cls_token (
str
, optional, defaults to"<s>"
) — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. - unk_token (
str
, optional, defaults to"<unk>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. - pad_token (
str
, optional, defaults to"<pad>"
) — The token used for padding, for example when batching sequences of different lengths. - mask_token (
str
, optional, defaults to"<mask>"
) — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. - add_prefix_space (
bool
, optional, defaults toFalse
) — Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
Constructs a RoBERTa tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
>>> from transformers import RobertaTokenizer
>>> tokenizer = RobertaTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
You can get around that behavior by passing add_prefix_space=True
when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
When used with is_split_into_words=True
, this tokenizer will add a space before each word (even the first one).
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) β List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs to which the special tokens will be added. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format:
- single sequence:
<s> X </s>
- pair of sequences:
<s> A </s></s> B </s>
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) β List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs. - already_has_special_tokens (
bool
, optional, defaults toFalse
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) β List[int]
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned.
RobertaTokenizerFast
class transformers.RobertaTokenizerFast
< source >( vocab_file = None merges_file = None tokenizer_file = None errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False trim_offsets = True **kwargs )
Parameters
- vocab_file (
str
) — Path to the vocabulary file. - merges_file (
str
) — Path to the merges file. - errors (
str
, optional, defaults to"replace"
) — Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information. - bos_token (
str
, optional, defaults to"<s>"
) — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the
cls_token
. - eos_token (
str
, optional, defaults to"</s>"
) — The end of sequence token.When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the
sep_token
. - sep_token (
str
, optional, defaults to"</s>"
) — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. - cls_token (
str
, optional, defaults to"<s>"
) — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. - unk_token (
str
, optional, defaults to"<unk>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. - pad_token (
str
, optional, defaults to"<pad>"
) — The token used for padding, for example when batching sequences of different lengths. - mask_token (
str
, optional, defaults to"<mask>"
) — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. - add_prefix_space (
bool
, optional, defaults toFalse
) — Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). - trim_offsets (
bool
, optional, defaults toTrue
) — Whether the post processing step should trim offsets to avoid including whitespaces.
Construct a βfastβ RoBERTa tokenizer (backed by HuggingFaceβs tokenizers library), derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
>>> from transformers import RobertaTokenizerFast
>>> tokenizer = RobertaTokenizerFast.from_pretrained("FacebookAI/roberta-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
You can get around that behavior by passing add_prefix_space=True
when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
When used with is_split_into_words=True
, this tokenizer needs to be instantiated with add_prefix_space=True
.
This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
RobertaModel
class transformers.RobertaModel
< source >( config add_pooling_layer = True )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the is_decoder
argument of the configuration set
to True
. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder
argument and
add_cross_attention
set to True
; an encoder_hidden_states
is then expected as an input to the forward pass.
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_size
parameter with value= 2. All the value in this tensor should be always < type_vocab_size.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. - encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
or(batch_size, sequence_length, target_length)
, optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- past_key_values (
tuple(tuple(torch.FloatTensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
. - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
).
Returns
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
andconfig.add_cross_attention=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) β Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally ifconfig.is_encoder_decoder=True
2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (seepast_key_values
input) to speed up sequential decoding.
The RobertaModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = RobertaModel.from_pretrained("FacebookAI/roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
RobertaForCausalLM
class transformers.RobertaForCausalLM
< source >( config )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa Model with a language modeling
head on top for CLM fine-tuning.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None past_key_values: typing.Tuple[typing.Tuple[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_size
parameter with value= 2. All the value in this tensor should be always < type_vocab_size.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. - encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in[-100, 0, ..., config.vocab_size]
(seeinput_ids
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
- past_key_values (
tuple(tuple(torch.FloatTensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
. - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
).
Returns
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) β Tuple oftorch.FloatTensor
tuples of lengthconfig.n_layers
, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant ifconfig.is_decoder = True
.Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
The RobertaForCausalLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> config = AutoConfig.from_pretrained("FacebookAI/roberta-base")
>>> config.is_decoder = True
>>> model = RobertaForCausalLM.from_pretrained("FacebookAI/roberta-base", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
RobertaForMaskedLM
class transformers.RobertaForMaskedLM
< source >( config )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa Model with a language modeling
head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_size
parameter with value= 2. All the value in this tensor should be always < type_vocab_size.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size]
(seeinput_ids
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
- kwargs (
Dict[str, any]
, optional, defaults to{}
) — Used to hide legacy arguments that have been deprecated.
Returns
transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MaskedLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Masked language modeling (MLM) loss. -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The RobertaForMaskedLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = RobertaForMaskedLM.from_pretrained("FacebookAI/roberta-base")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.1
RobertaForSequenceClassification
class transformers.RobertaForSequenceClassification
< source >( config )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_size
parameter with value= 2. All the value in this tensor should be always < type_vocab_size.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.SequenceClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Classification (or regression if config.num_labels==1) loss. -
logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The RobertaForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example of single-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, RobertaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'optimism'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.08
Example of multi-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, RobertaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RobertaForSequenceClassification.from_pretrained(
... "cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
RobertaForMultipleChoice
class transformers.RobertaForMultipleChoice
< source >( config )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_size
parameter with value= 2. All the value in this tensor should be always < type_vocab_size.
- position_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices-1]
wherenum_choices
is the size of the second dimension of the input tensors. (Seeinput_ids
above)
Returns
transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MultipleChoiceModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
loss (
torch.FloatTensor
of shape (1,), optional, returned whenlabels
is provided) β Classification loss. -
logits (
torch.FloatTensor
of shape(batch_size, num_choices)
) β num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
-
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The RobertaForMultipleChoice forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = RobertaForMultipleChoice.from_pretrained("FacebookAI/roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
RobertaForTokenClassification
class transformers.RobertaForTokenClassification
< source >( config )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_size
parameter with value= 2. All the value in this tensor should be always < type_vocab_size.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1]
.
Returns
transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.TokenClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Classification loss. -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.num_labels)
) β Classification scores (before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The RobertaForTokenClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
>>> model = RobertaForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.01
RobertaForQuestionAnswering
class transformers.RobertaForQuestionAnswering
< source >( config )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute span start logits
and span end logits
).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_size
parameter with value= 2. All the value in this tensor should be always < type_vocab_size.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss. - end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.
Returns
transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.QuestionAnsweringModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. -
start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) β Span-start scores (before SoftMax). -
end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) β Span-end scores (before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The RobertaForQuestionAnswering forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
>>> model = RobertaForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
' puppet'
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
0.86
TFRobertaModel
class transformers.TFRobertaModel
< source >( config *inputs **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_ids
only and nothing else:model(input_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) β transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or tuple(tf.Tensor)
Parameters
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults toFalse
) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). - encoder_hidden_states (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. - encoder_attention_mask (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- past_key_values (
Tuple[Tuple[tf.Tensor]]
of lengthconfig.n_layers
) — contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
. - use_cache (
bool
, optional, defaults toTrue
) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). Set toFalse
during training,True
during generation
Returns
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (RobertaConfig) and inputs.
-
last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
tf.Tensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.This output is usually not a good summary of the semantic content of the input, youβre often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
-
past_key_values (
List[tf.Tensor]
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) β List oftf.Tensor
of lengthconfig.n_layers
, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)
).Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding. -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
The TFRobertaModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = TFRobertaModel.from_pretrained("FacebookAI/roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFRobertaForCausalLM
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) β transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)
Parameters
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults toFalse
) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). - encoder_hidden_states (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. - encoder_attention_mask (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- past_key_values (
Tuple[Tuple[tf.Tensor]]
of lengthconfig.n_layers
) — contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
. - use_cache (
bool
, optional, defaults toTrue
) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). Set toFalse
during training,True
during generation - labels (
tf.Tensor
ornp.ndarray
of shape(batch_size, sequence_length)
, optional) — Labels for computing the cross entropy classification loss. Indices should be in[0, ..., config.vocab_size - 1]
.
Returns
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (RobertaConfig) and inputs.
-
loss (
tf.Tensor
of shape(n,)
, optional, where n is the number of non-masked labels, returned whenlabels
is provided) β Language modeling loss (for next-token prediction). -
logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
past_key_values (
List[tf.Tensor]
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) β List oftf.Tensor
of lengthconfig.n_layers
, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)
).Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
The TFRobertaForCausalLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaForCausalLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = TFRobertaForCausalLM.from_pretrained("FacebookAI/roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits
TFRobertaForMaskedLM
class transformers.TFRobertaForMaskedLM
< source >( config *inputs **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa Model with a language modeling
head on top.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_ids
only and nothing else:model(input_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) β transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
Parameters
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults toFalse
) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). - labels (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) — Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size]
(seeinput_ids
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
Returns
transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFMaskedLMOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (RobertaConfig) and inputs.
-
loss (
tf.Tensor
of shape(n,)
, optional, where n is the number of non-masked labels, returned whenlabels
is provided) β Masked language modeling (MLM) loss. -
logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRobertaForMaskedLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaForMaskedLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = TFRobertaForMaskedLM.from_pretrained("FacebookAI/roberta-base")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'
TFRobertaForSequenceClassification
class transformers.TFRobertaForSequenceClassification
< source >( config *inputs **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_ids
only and nothing else:model(input_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) β transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
Parameters
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults toFalse
) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). - labels (
tf.Tensor
of shape(batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSequenceClassifierOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (RobertaConfig) and inputs.
-
loss (
tf.Tensor
of shape(batch_size, )
, optional, returned whenlabels
is provided) β Classification (or regression if config.num_labels==1) loss. -
logits (
tf.Tensor
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRobertaForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = TFRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'optimism'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.08
TFRobertaForMultipleChoice
class transformers.TFRobertaForMultipleChoice
< source >( config *inputs **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_ids
only and nothing else:model(input_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) β transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)
Parameters
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
tf.Tensor
of shape(batch_size, num_choices, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults toFalse
) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). - labels (
tf.Tensor
of shape(batch_size,)
, optional) — Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices]
wherenum_choices
is the size of the second dimension of the input tensors. (Seeinput_ids
above)
Returns
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (RobertaConfig) and inputs.
-
loss (
tf.Tensor
of shape (batch_size, ), optional, returned whenlabels
is provided) β Classification loss. -
logits (
tf.Tensor
of shape(batch_size, num_choices)
) β num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
-
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRobertaForMultipleChoice forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaForMultipleChoice
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = TFRobertaForMultipleChoice.from_pretrained("FacebookAI/roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits
TFRobertaForTokenClassification
class transformers.TFRobertaForTokenClassification
< source >( config *inputs **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_ids
only and nothing else:model(input_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) β transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)
Parameters
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults toFalse
) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). - labels (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) — Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1]
.
Returns
transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFTokenClassifierOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (RobertaConfig) and inputs.
-
loss (
tf.Tensor
of shape(n,)
, optional, where n is the number of unmasked labels, returned whenlabels
is provided) β Classification loss. -
logits (
tf.Tensor
of shape(batch_size, sequence_length, config.num_labels)
) β Classification scores (before SoftMax). -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRobertaForTokenClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-large-ner-english")
>>> model = TFRobertaForTokenClassification.from_pretrained("ydshieh/roberta-large-ner-english")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']
TFRobertaForQuestionAnswering
class transformers.TFRobertaForQuestionAnswering
< source >( config *inputs **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute span start logits
and span end logits
).
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_ids
only and nothing else:model(input_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) β transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)
Parameters
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. - training (
bool
, optional, defaults toFalse
) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). - start_positions (
tf.Tensor
of shape(batch_size,)
, optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss. - end_positions (
tf.Tensor
of shape(batch_size,)
, optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.
Returns
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (RobertaConfig) and inputs.
-
loss (
tf.Tensor
of shape(batch_size, )
, optional, returned whenstart_positions
andend_positions
are provided) β Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. -
start_logits (
tf.Tensor
of shape(batch_size, sequence_length)
) β Span-start scores (before SoftMax). -
end_logits (
tf.Tensor
of shape(batch_size, sequence_length)
) β Span-end scores (before SoftMax). -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRobertaForQuestionAnswering forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaForQuestionAnswering
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-base-squad2")
>>> model = TFRobertaForQuestionAnswering.from_pretrained("ydshieh/roberta-base-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
' puppet'
FlaxRobertaModel
class transformers.FlaxRobertaModel
< source >( config: RobertaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f1b5e865510> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) β transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
,optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
jnp.ndarray
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaModel
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = FlaxRobertaModel.from_pretrained("FacebookAI/roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxRobertaForCausalLM
class transformers.FlaxRobertaForCausalLM
< source >( config: RobertaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Roberta Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for autoregressive tasks.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f1b5e865510> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) β transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
,optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
logits (
jnp.ndarray
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
past_key_values (
tuple(tuple(jnp.ndarray))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) β Tuple ofjnp.ndarray
tuples of lengthconfig.n_layers
, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant ifconfig.is_decoder = True
.Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
The FlaxRobertaPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = FlaxRobertaForCausalLM.from_pretrained("FacebookAI/roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]
FlaxRobertaForMaskedLM
class transformers.FlaxRobertaForMaskedLM
< source >( config: RobertaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa Model with a language modeling
head on top.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f1b5e865510> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) β transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
,optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
jnp.ndarray
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = FlaxRobertaForMaskedLM.from_pretrained("FacebookAI/roberta-base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxRobertaForSequenceClassification
class transformers.FlaxRobertaForSequenceClassification
< source >( config: RobertaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Roberta Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f1b5e865510> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) β transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
,optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
logits (
jnp.ndarray
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = FlaxRobertaForSequenceClassification.from_pretrained("FacebookAI/roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxRobertaForMultipleChoice
class transformers.FlaxRobertaForMultipleChoice
< source >( config: RobertaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f1b5e865510> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) β transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
numpy.ndarray
of shape(batch_size, num_choices, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, num_choices, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, num_choices, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
numpy.ndarray
of shape(batch_size, num_choices, sequence_length)
,optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
logits (
jnp.ndarray
of shape(batch_size, num_choices)
) β num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
-
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = FlaxRobertaForMultipleChoice.from_pretrained("FacebookAI/roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logits
FlaxRobertaForTokenClassification
class transformers.FlaxRobertaForTokenClassification
< source >( config: RobertaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f1b5e865510> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) β transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
,optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
logits (
jnp.ndarray
of shape(batch_size, sequence_length, config.num_labels)
) β Classification scores (before SoftMax). -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = FlaxRobertaForTokenClassification.from_pretrained("FacebookAI/roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxRobertaForQuestionAnswering
class transformers.FlaxRobertaForQuestionAnswering
< source >( config: RobertaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute span start logits
and span end logits
).
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f1b5e865510> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) β transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
,optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RobertaConfig) and inputs.
-
start_logits (
jnp.ndarray
of shape(batch_size, sequence_length)
) β Span-start scores (before SoftMax). -
end_logits (
jnp.ndarray
of shape(batch_size, sequence_length)
) β Span-end scores (before SoftMax). -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> model = FlaxRobertaForQuestionAnswering.from_pretrained("FacebookAI/roberta-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits