See axolotl config
axolotl version: 0.4.0
# use google/gemma-7b if you have access
base_model: google/gemma-2b-it
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
# huggingface repo
datasets:
- path: ./python-oasst/combined_chunk_2.jsonl
type: oasst
val_set_size: 0.40
output_dir: ./out3
adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
wandb_project: gemma-2b-it
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 3
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 256
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero1.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
out3
This model is a fine-tuned version of google/gemma-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2430
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 3
- total_train_batch_size: 48
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8926 | 0.02 | 1 | 2.7617 |
1.4502 | 0.26 | 12 | 1.4564 |
1.7617 | 0.52 | 24 | 1.3147 |
1.2051 | 0.78 | 36 | 1.2781 |
1.1353 | 1.01 | 48 | 1.2603 |
1.1787 | 1.28 | 60 | 1.2498 |
1.1416 | 1.54 | 72 | 1.2445 |
1.1606 | 1.8 | 84 | 1.2430 |
Framework versions
- PEFT 0.9.0
- Transformers 4.38.0
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 0
Model tree for dvdmrs09/peft-gemma-2b
Base model
google/gemma-2b-it