mistral-alpaca2k-3e
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the mhenrichsen/alpaca_2k_test dataset. It achieves the following results on the evaluation set:
- Loss: 0.8850
Training procedure
accelerate launch -m axolotl.cli.train examples/mistral/qlora.yml
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.392 | 0.0 | 1 | 1.2581 |
0.912 | 0.15 | 36 | 0.7686 |
0.7114 | 0.3 | 72 | 0.7590 |
0.7849 | 0.45 | 108 | 0.7561 |
0.693 | 0.61 | 144 | 0.7546 |
0.686 | 0.76 | 180 | 0.7538 |
0.782 | 0.91 | 216 | 0.7524 |
0.5691 | 1.06 | 252 | 0.7700 |
0.5295 | 1.21 | 288 | 0.7883 |
0.5313 | 1.36 | 324 | 0.7876 |
0.4994 | 1.52 | 360 | 0.7971 |
0.6007 | 1.67 | 396 | 0.7881 |
0.5459 | 1.82 | 432 | 0.7911 |
0.5194 | 1.97 | 468 | 0.7924 |
0.3376 | 2.12 | 504 | 0.8711 |
0.2983 | 2.27 | 540 | 0.8916 |
0.341 | 2.43 | 576 | 0.8891 |
0.2961 | 2.58 | 612 | 0.8861 |
0.2469 | 2.73 | 648 | 0.8860 |
0.3535 | 2.88 | 684 | 0.8850 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for dvijay/mistral-alpaca2k-3e-lora
Base model
mistralai/Mistral-7B-v0.1