Edit model card

mt5_base_TH_wiki

This model is a fine-tuned version of google/mt5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Rouge2 Precision: 0.0021
  • Rouge2 Recall: 0.0009
  • Rouge2 Fmeasure: 0.0013

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 50
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
0.0 1.0 1296 nan 0.0021 0.0009 0.0013
0.0 2.0 2592 nan 0.0021 0.0009 0.0013
0.0 3.0 3888 nan 0.0021 0.0009 0.0013
0.0 4.0 5184 nan 0.0021 0.0009 0.0013
0.0 5.0 6480 nan 0.0021 0.0009 0.0013
0.0 6.0 7776 nan 0.0021 0.0009 0.0013
0.0 7.0 9072 nan 0.0021 0.0009 0.0013
0.0 8.0 10368 nan 0.0021 0.0009 0.0013
0.0 9.0 11664 nan 0.0021 0.0009 0.0013
0.0 10.0 12960 nan 0.0021 0.0009 0.0013
0.0 11.0 14256 nan 0.0021 0.0009 0.0013
0.0 12.0 15552 nan 0.0021 0.0009 0.0013
0.0 13.0 16848 nan 0.0021 0.0009 0.0013
0.0 14.0 18144 nan 0.0021 0.0009 0.0013
0.0 15.0 19440 nan 0.0021 0.0009 0.0013

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.2.2
  • Datasets 2.16.1
  • Tokenizers 0.20.1
Downloads last month
2
Safetensors
Model size
582M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for e22vvb/mt5_base_TH_wiki

Base model

google/mt5-base
Finetuned
(154)
this model