base-NER / README.md
eddiegulay's picture
End of training
9e83f05 verified
|
raw
history blame
2.19 kB
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: base-NER
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: test
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.8845085098992705
          - name: Recall
            type: recall
            value: 0.9017351274787535
          - name: F1
            type: f1
            value: 0.8930387515342801
          - name: Accuracy
            type: accuracy
            value: 0.9782491655001615

base-NER

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1129
  • Precision: 0.8845
  • Recall: 0.9017
  • F1: 0.8930
  • Accuracy: 0.9782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0595 1.0 878 0.1046 0.8676 0.8909 0.8791 0.9762
0.0319 2.0 1756 0.1129 0.8845 0.9017 0.8930 0.9782

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1