metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: base-NER
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8845085098992705
- name: Recall
type: recall
value: 0.9017351274787535
- name: F1
type: f1
value: 0.8930387515342801
- name: Accuracy
type: accuracy
value: 0.9782491655001615
base-NER
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1129
- Precision: 0.8845
- Recall: 0.9017
- F1: 0.8930
- Accuracy: 0.9782
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0595 | 1.0 | 878 | 0.1046 | 0.8676 | 0.8909 | 0.8791 | 0.9762 |
0.0319 | 2.0 | 1756 | 0.1129 | 0.8845 | 0.9017 | 0.8930 | 0.9782 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1