See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Hermes-2-Pro-Llama-3-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c812e48b734d0c8d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c812e48b734d0c8d_train_data.json
type:
field_input: prompt
field_instruction: critic_prompt
field_output: critic_response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: eddysang/5193e313-ae36-46ae-81ca-89d07ef56a0e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/c812e48b734d0c8d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: yaudayah0
wandb_mode: online
wandb_name: 10e82da7-cbd1-4969-a8cf-afb2d227f544
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 10e82da7-cbd1-4969-a8cf-afb2d227f544
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
5193e313-ae36-46ae-81ca-89d07ef56a0e
This model is a fine-tuned version of NousResearch/Hermes-2-Pro-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3296
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0084 | 1 | 1.8614 |
1.664 | 0.0754 | 9 | 1.6357 |
1.473 | 0.1508 | 18 | 1.4484 |
1.3702 | 0.2262 | 27 | 1.3977 |
1.4002 | 0.3016 | 36 | 1.3738 |
1.3669 | 0.3770 | 45 | 1.3604 |
1.3222 | 0.4524 | 54 | 1.3486 |
1.357 | 0.5277 | 63 | 1.3427 |
1.3508 | 0.6031 | 72 | 1.3369 |
1.3443 | 0.6785 | 81 | 1.3320 |
1.3302 | 0.7539 | 90 | 1.3303 |
1.3504 | 0.8293 | 99 | 1.3296 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for eddysang/5193e313-ae36-46ae-81ca-89d07ef56a0e
Base model
NousResearch/Meta-Llama-3-8B
Finetuned
NousResearch/Hermes-2-Pro-Llama-3-8B