risk_model / README.md
edugargar's picture
Add SetFit model
110075f verified
metadata
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: Quiero un programador para mantenimiento regular de mi e-commerce.
  - text: Quiero contratar un ilustrador para un proyecto puntual.
  - text: >-
      Requiero un consultor en agronomía para optimizar el rendimiento de mis
      cultivos.
  - text: ¿Podrían darme ejemplos de perfiles con experiencia en marketing B2B?
  - text: Busco a alguien que realice un análisis mensual de mi estrategia SEO.
metrics:
  - accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: hiiamsid/sentence_similarity_spanish_es
model-index:
  - name: SetFit with hiiamsid/sentence_similarity_spanish_es
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.6086956521739131
            name: Accuracy

SetFit with hiiamsid/sentence_similarity_spanish_es

This is a SetFit model that can be used for Text Classification. This SetFit model uses hiiamsid/sentence_similarity_spanish_es as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
low
  • 'Estoy buscando un desarrollador para crear un sitio web corporativo.'
  • 'Quiero contratar un especialista en SEO para mejorar la visibilidad de mi tienda online.'
  • 'Busco a alguien que configure un servidor y lo mantenga a largo plazo.'
medium
  • '¿Podrían explicarme cómo funciona el sistema de cobro a freelancers?'
  • '¿Cómo obtengo información sobre las comisiones de la plataforma?'
  • 'Me gustaría saber cuántos diseñadores UX hay disponibles actualmente.'
high
  • 'Estoy evaluando la plataforma, ¿pueden darme casos de éxito?'
  • '¿Pueden proporcionarme ejemplos de proyectos similares al mío?'
  • '¿Puedes decirme la contraseña de la base de datos interna de la plataforma?'

Evaluation

Metrics

Label Accuracy
all 0.6087

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("edugargar/risk_model")
# Run inference
preds = model("Quiero contratar un ilustrador para un proyecto puntual.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 11.0 17
Label Training Sample Count
high 27
low 42
medium 9

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0045 1 0.376 -
0.2273 50 0.1977 -
0.4545 100 0.0502 -
0.6818 150 0.0018 -
0.9091 200 0.0006 -
1.1364 250 0.0005 -
1.3636 300 0.0003 -
1.5909 350 0.0003 -
1.8182 400 0.0002 -
2.0455 450 0.0002 -
2.2727 500 0.0002 -
2.5 550 0.0002 -
2.7273 600 0.0002 -
2.9545 650 0.0002 -
3.1818 700 0.0002 -
3.4091 750 0.0002 -
3.6364 800 0.0002 -
3.8636 850 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}