|
--- |
|
tags: |
|
- mteb |
|
- Sentence Transformers |
|
- sentence-similarity |
|
- sentence-transformers |
|
model-index: |
|
- name: multilingual-e5-small |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 73.79104477611939 |
|
- type: ap |
|
value: 36.9996434842022 |
|
- type: f1 |
|
value: 67.95453679103099 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (de) |
|
config: de |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 71.64882226980728 |
|
- type: ap |
|
value: 82.11942130026586 |
|
- type: f1 |
|
value: 69.87963421606715 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en-ext) |
|
config: en-ext |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 75.8095952023988 |
|
- type: ap |
|
value: 24.46869495579561 |
|
- type: f1 |
|
value: 63.00108480037597 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (ja) |
|
config: ja |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 64.186295503212 |
|
- type: ap |
|
value: 15.496804690197042 |
|
- type: f1 |
|
value: 52.07153895475031 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 88.699325 |
|
- type: ap |
|
value: 85.27039559917269 |
|
- type: f1 |
|
value: 88.65556295032513 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 44.69799999999999 |
|
- type: f1 |
|
value: 43.73187348654165 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (de) |
|
config: de |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 40.245999999999995 |
|
- type: f1 |
|
value: 39.3863530637684 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (es) |
|
config: es |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 40.394 |
|
- type: f1 |
|
value: 39.301223469483446 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 38.864 |
|
- type: f1 |
|
value: 37.97974261868003 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 37.682 |
|
- type: f1 |
|
value: 37.07399369768313 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 37.504 |
|
- type: f1 |
|
value: 36.62317273874278 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.061 |
|
- type: map_at_10 |
|
value: 31.703 |
|
- type: map_at_100 |
|
value: 32.967 |
|
- type: map_at_1000 |
|
value: 33.001000000000005 |
|
- type: map_at_3 |
|
value: 27.466 |
|
- type: map_at_5 |
|
value: 29.564 |
|
- type: mrr_at_1 |
|
value: 19.559 |
|
- type: mrr_at_10 |
|
value: 31.874999999999996 |
|
- type: mrr_at_100 |
|
value: 33.146 |
|
- type: mrr_at_1000 |
|
value: 33.18 |
|
- type: mrr_at_3 |
|
value: 27.667 |
|
- type: mrr_at_5 |
|
value: 29.74 |
|
- type: ndcg_at_1 |
|
value: 19.061 |
|
- type: ndcg_at_10 |
|
value: 39.062999999999995 |
|
- type: ndcg_at_100 |
|
value: 45.184000000000005 |
|
- type: ndcg_at_1000 |
|
value: 46.115 |
|
- type: ndcg_at_3 |
|
value: 30.203000000000003 |
|
- type: ndcg_at_5 |
|
value: 33.953 |
|
- type: precision_at_1 |
|
value: 19.061 |
|
- type: precision_at_10 |
|
value: 6.279999999999999 |
|
- type: precision_at_100 |
|
value: 0.9129999999999999 |
|
- type: precision_at_1000 |
|
value: 0.099 |
|
- type: precision_at_3 |
|
value: 12.706999999999999 |
|
- type: precision_at_5 |
|
value: 9.431000000000001 |
|
- type: recall_at_1 |
|
value: 19.061 |
|
- type: recall_at_10 |
|
value: 62.802 |
|
- type: recall_at_100 |
|
value: 91.323 |
|
- type: recall_at_1000 |
|
value: 98.72 |
|
- type: recall_at_3 |
|
value: 38.122 |
|
- type: recall_at_5 |
|
value: 47.155 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 39.22266660528253 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 30.79980849482483 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 57.8790068352054 |
|
- type: mrr |
|
value: 71.78791276436706 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.36328364043163 |
|
- type: cos_sim_spearman |
|
value: 82.26211536195868 |
|
- type: euclidean_pearson |
|
value: 80.3183865039173 |
|
- type: euclidean_spearman |
|
value: 79.88495276296132 |
|
- type: manhattan_pearson |
|
value: 80.14484480692127 |
|
- type: manhattan_spearman |
|
value: 80.39279565980743 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (de-en) |
|
config: de-en |
|
split: test |
|
revision: d51519689f32196a32af33b075a01d0e7c51e252 |
|
metrics: |
|
- type: accuracy |
|
value: 98.0375782881002 |
|
- type: f1 |
|
value: 97.86012526096033 |
|
- type: precision |
|
value: 97.77139874739039 |
|
- type: recall |
|
value: 98.0375782881002 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (fr-en) |
|
config: fr-en |
|
split: test |
|
revision: d51519689f32196a32af33b075a01d0e7c51e252 |
|
metrics: |
|
- type: accuracy |
|
value: 93.35241030156286 |
|
- type: f1 |
|
value: 92.66050333846944 |
|
- type: precision |
|
value: 92.3306919069631 |
|
- type: recall |
|
value: 93.35241030156286 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (ru-en) |
|
config: ru-en |
|
split: test |
|
revision: d51519689f32196a32af33b075a01d0e7c51e252 |
|
metrics: |
|
- type: accuracy |
|
value: 94.0699688257707 |
|
- type: f1 |
|
value: 93.50236693222492 |
|
- type: precision |
|
value: 93.22791825424315 |
|
- type: recall |
|
value: 94.0699688257707 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (zh-en) |
|
config: zh-en |
|
split: test |
|
revision: d51519689f32196a32af33b075a01d0e7c51e252 |
|
metrics: |
|
- type: accuracy |
|
value: 89.25750394944708 |
|
- type: f1 |
|
value: 88.79234684921889 |
|
- type: precision |
|
value: 88.57293312269616 |
|
- type: recall |
|
value: 89.25750394944708 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 79.41558441558442 |
|
- type: f1 |
|
value: 79.25886487487219 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 35.747820820329736 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 27.045143830596146 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.252999999999997 |
|
- type: map_at_10 |
|
value: 31.655916666666666 |
|
- type: map_at_100 |
|
value: 32.680749999999996 |
|
- type: map_at_1000 |
|
value: 32.79483333333334 |
|
- type: map_at_3 |
|
value: 29.43691666666666 |
|
- type: map_at_5 |
|
value: 30.717416666666665 |
|
- type: mrr_at_1 |
|
value: 28.602750000000004 |
|
- type: mrr_at_10 |
|
value: 35.56875 |
|
- type: mrr_at_100 |
|
value: 36.3595 |
|
- type: mrr_at_1000 |
|
value: 36.427749999999996 |
|
- type: mrr_at_3 |
|
value: 33.586166666666664 |
|
- type: mrr_at_5 |
|
value: 34.73641666666666 |
|
- type: ndcg_at_1 |
|
value: 28.602750000000004 |
|
- type: ndcg_at_10 |
|
value: 36.06933333333334 |
|
- type: ndcg_at_100 |
|
value: 40.70141666666667 |
|
- type: ndcg_at_1000 |
|
value: 43.24341666666667 |
|
- type: ndcg_at_3 |
|
value: 32.307916666666664 |
|
- type: ndcg_at_5 |
|
value: 34.129999999999995 |
|
- type: precision_at_1 |
|
value: 28.602750000000004 |
|
- type: precision_at_10 |
|
value: 6.097666666666667 |
|
- type: precision_at_100 |
|
value: 0.9809166666666668 |
|
- type: precision_at_1000 |
|
value: 0.13766666666666663 |
|
- type: precision_at_3 |
|
value: 14.628166666666667 |
|
- type: precision_at_5 |
|
value: 10.266916666666667 |
|
- type: recall_at_1 |
|
value: 24.252999999999997 |
|
- type: recall_at_10 |
|
value: 45.31916666666667 |
|
- type: recall_at_100 |
|
value: 66.03575000000001 |
|
- type: recall_at_1000 |
|
value: 83.94708333333334 |
|
- type: recall_at_3 |
|
value: 34.71941666666666 |
|
- type: recall_at_5 |
|
value: 39.46358333333333 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 9.024000000000001 |
|
- type: map_at_10 |
|
value: 15.644 |
|
- type: map_at_100 |
|
value: 17.154 |
|
- type: map_at_1000 |
|
value: 17.345 |
|
- type: map_at_3 |
|
value: 13.028 |
|
- type: map_at_5 |
|
value: 14.251 |
|
- type: mrr_at_1 |
|
value: 19.674 |
|
- type: mrr_at_10 |
|
value: 29.826999999999998 |
|
- type: mrr_at_100 |
|
value: 30.935000000000002 |
|
- type: mrr_at_1000 |
|
value: 30.987 |
|
- type: mrr_at_3 |
|
value: 26.645000000000003 |
|
- type: mrr_at_5 |
|
value: 28.29 |
|
- type: ndcg_at_1 |
|
value: 19.674 |
|
- type: ndcg_at_10 |
|
value: 22.545 |
|
- type: ndcg_at_100 |
|
value: 29.207 |
|
- type: ndcg_at_1000 |
|
value: 32.912 |
|
- type: ndcg_at_3 |
|
value: 17.952 |
|
- type: ndcg_at_5 |
|
value: 19.363 |
|
- type: precision_at_1 |
|
value: 19.674 |
|
- type: precision_at_10 |
|
value: 7.212000000000001 |
|
- type: precision_at_100 |
|
value: 1.435 |
|
- type: precision_at_1000 |
|
value: 0.212 |
|
- type: precision_at_3 |
|
value: 13.507 |
|
- type: precision_at_5 |
|
value: 10.397 |
|
- type: recall_at_1 |
|
value: 9.024000000000001 |
|
- type: recall_at_10 |
|
value: 28.077999999999996 |
|
- type: recall_at_100 |
|
value: 51.403 |
|
- type: recall_at_1000 |
|
value: 72.406 |
|
- type: recall_at_3 |
|
value: 16.768 |
|
- type: recall_at_5 |
|
value: 20.737 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 8.012 |
|
- type: map_at_10 |
|
value: 17.138 |
|
- type: map_at_100 |
|
value: 24.146 |
|
- type: map_at_1000 |
|
value: 25.622 |
|
- type: map_at_3 |
|
value: 12.552 |
|
- type: map_at_5 |
|
value: 14.435 |
|
- type: mrr_at_1 |
|
value: 62.25000000000001 |
|
- type: mrr_at_10 |
|
value: 71.186 |
|
- type: mrr_at_100 |
|
value: 71.504 |
|
- type: mrr_at_1000 |
|
value: 71.514 |
|
- type: mrr_at_3 |
|
value: 69.333 |
|
- type: mrr_at_5 |
|
value: 70.408 |
|
- type: ndcg_at_1 |
|
value: 49.75 |
|
- type: ndcg_at_10 |
|
value: 37.76 |
|
- type: ndcg_at_100 |
|
value: 42.071 |
|
- type: ndcg_at_1000 |
|
value: 49.309 |
|
- type: ndcg_at_3 |
|
value: 41.644 |
|
- type: ndcg_at_5 |
|
value: 39.812999999999995 |
|
- type: precision_at_1 |
|
value: 62.25000000000001 |
|
- type: precision_at_10 |
|
value: 30.15 |
|
- type: precision_at_100 |
|
value: 9.753 |
|
- type: precision_at_1000 |
|
value: 1.9189999999999998 |
|
- type: precision_at_3 |
|
value: 45.667 |
|
- type: precision_at_5 |
|
value: 39.15 |
|
- type: recall_at_1 |
|
value: 8.012 |
|
- type: recall_at_10 |
|
value: 22.599 |
|
- type: recall_at_100 |
|
value: 48.068 |
|
- type: recall_at_1000 |
|
value: 71.328 |
|
- type: recall_at_3 |
|
value: 14.043 |
|
- type: recall_at_5 |
|
value: 17.124 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 42.455 |
|
- type: f1 |
|
value: 37.59462649781862 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 58.092 |
|
- type: map_at_10 |
|
value: 69.586 |
|
- type: map_at_100 |
|
value: 69.968 |
|
- type: map_at_1000 |
|
value: 69.982 |
|
- type: map_at_3 |
|
value: 67.48100000000001 |
|
- type: map_at_5 |
|
value: 68.915 |
|
- type: mrr_at_1 |
|
value: 62.166 |
|
- type: mrr_at_10 |
|
value: 73.588 |
|
- type: mrr_at_100 |
|
value: 73.86399999999999 |
|
- type: mrr_at_1000 |
|
value: 73.868 |
|
- type: mrr_at_3 |
|
value: 71.6 |
|
- type: mrr_at_5 |
|
value: 72.99 |
|
- type: ndcg_at_1 |
|
value: 62.166 |
|
- type: ndcg_at_10 |
|
value: 75.27199999999999 |
|
- type: ndcg_at_100 |
|
value: 76.816 |
|
- type: ndcg_at_1000 |
|
value: 77.09700000000001 |
|
- type: ndcg_at_3 |
|
value: 71.36 |
|
- type: ndcg_at_5 |
|
value: 73.785 |
|
- type: precision_at_1 |
|
value: 62.166 |
|
- type: precision_at_10 |
|
value: 9.716 |
|
- type: precision_at_100 |
|
value: 1.065 |
|
- type: precision_at_1000 |
|
value: 0.11 |
|
- type: precision_at_3 |
|
value: 28.278 |
|
- type: precision_at_5 |
|
value: 18.343999999999998 |
|
- type: recall_at_1 |
|
value: 58.092 |
|
- type: recall_at_10 |
|
value: 88.73400000000001 |
|
- type: recall_at_100 |
|
value: 95.195 |
|
- type: recall_at_1000 |
|
value: 97.04599999999999 |
|
- type: recall_at_3 |
|
value: 78.45 |
|
- type: recall_at_5 |
|
value: 84.316 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 16.649 |
|
- type: map_at_10 |
|
value: 26.457000000000004 |
|
- type: map_at_100 |
|
value: 28.169 |
|
- type: map_at_1000 |
|
value: 28.352 |
|
- type: map_at_3 |
|
value: 23.305 |
|
- type: map_at_5 |
|
value: 25.169000000000004 |
|
- type: mrr_at_1 |
|
value: 32.407000000000004 |
|
- type: mrr_at_10 |
|
value: 40.922 |
|
- type: mrr_at_100 |
|
value: 41.931000000000004 |
|
- type: mrr_at_1000 |
|
value: 41.983 |
|
- type: mrr_at_3 |
|
value: 38.786 |
|
- type: mrr_at_5 |
|
value: 40.205999999999996 |
|
- type: ndcg_at_1 |
|
value: 32.407000000000004 |
|
- type: ndcg_at_10 |
|
value: 33.314 |
|
- type: ndcg_at_100 |
|
value: 40.312 |
|
- type: ndcg_at_1000 |
|
value: 43.685 |
|
- type: ndcg_at_3 |
|
value: 30.391000000000002 |
|
- type: ndcg_at_5 |
|
value: 31.525 |
|
- type: precision_at_1 |
|
value: 32.407000000000004 |
|
- type: precision_at_10 |
|
value: 8.966000000000001 |
|
- type: precision_at_100 |
|
value: 1.6019999999999999 |
|
- type: precision_at_1000 |
|
value: 0.22200000000000003 |
|
- type: precision_at_3 |
|
value: 20.165 |
|
- type: precision_at_5 |
|
value: 14.722 |
|
- type: recall_at_1 |
|
value: 16.649 |
|
- type: recall_at_10 |
|
value: 39.117000000000004 |
|
- type: recall_at_100 |
|
value: 65.726 |
|
- type: recall_at_1000 |
|
value: 85.784 |
|
- type: recall_at_3 |
|
value: 27.914 |
|
- type: recall_at_5 |
|
value: 33.289 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 36.253 |
|
- type: map_at_10 |
|
value: 56.16799999999999 |
|
- type: map_at_100 |
|
value: 57.06099999999999 |
|
- type: map_at_1000 |
|
value: 57.126 |
|
- type: map_at_3 |
|
value: 52.644999999999996 |
|
- type: map_at_5 |
|
value: 54.909 |
|
- type: mrr_at_1 |
|
value: 72.505 |
|
- type: mrr_at_10 |
|
value: 79.66 |
|
- type: mrr_at_100 |
|
value: 79.869 |
|
- type: mrr_at_1000 |
|
value: 79.88 |
|
- type: mrr_at_3 |
|
value: 78.411 |
|
- type: mrr_at_5 |
|
value: 79.19800000000001 |
|
- type: ndcg_at_1 |
|
value: 72.505 |
|
- type: ndcg_at_10 |
|
value: 65.094 |
|
- type: ndcg_at_100 |
|
value: 68.219 |
|
- type: ndcg_at_1000 |
|
value: 69.515 |
|
- type: ndcg_at_3 |
|
value: 59.99 |
|
- type: ndcg_at_5 |
|
value: 62.909000000000006 |
|
- type: precision_at_1 |
|
value: 72.505 |
|
- type: precision_at_10 |
|
value: 13.749 |
|
- type: precision_at_100 |
|
value: 1.619 |
|
- type: precision_at_1000 |
|
value: 0.179 |
|
- type: precision_at_3 |
|
value: 38.357 |
|
- type: precision_at_5 |
|
value: 25.313000000000002 |
|
- type: recall_at_1 |
|
value: 36.253 |
|
- type: recall_at_10 |
|
value: 68.744 |
|
- type: recall_at_100 |
|
value: 80.925 |
|
- type: recall_at_1000 |
|
value: 89.534 |
|
- type: recall_at_3 |
|
value: 57.535000000000004 |
|
- type: recall_at_5 |
|
value: 63.282000000000004 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 80.82239999999999 |
|
- type: ap |
|
value: 75.65895781725314 |
|
- type: f1 |
|
value: 80.75880969095746 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.624 |
|
- type: map_at_10 |
|
value: 34.075 |
|
- type: map_at_100 |
|
value: 35.229 |
|
- type: map_at_1000 |
|
value: 35.276999999999994 |
|
- type: map_at_3 |
|
value: 30.245 |
|
- type: map_at_5 |
|
value: 32.42 |
|
- type: mrr_at_1 |
|
value: 22.264 |
|
- type: mrr_at_10 |
|
value: 34.638000000000005 |
|
- type: mrr_at_100 |
|
value: 35.744 |
|
- type: mrr_at_1000 |
|
value: 35.787 |
|
- type: mrr_at_3 |
|
value: 30.891000000000002 |
|
- type: mrr_at_5 |
|
value: 33.042 |
|
- type: ndcg_at_1 |
|
value: 22.264 |
|
- type: ndcg_at_10 |
|
value: 40.991 |
|
- type: ndcg_at_100 |
|
value: 46.563 |
|
- type: ndcg_at_1000 |
|
value: 47.743 |
|
- type: ndcg_at_3 |
|
value: 33.198 |
|
- type: ndcg_at_5 |
|
value: 37.069 |
|
- type: precision_at_1 |
|
value: 22.264 |
|
- type: precision_at_10 |
|
value: 6.5089999999999995 |
|
- type: precision_at_100 |
|
value: 0.9299999999999999 |
|
- type: precision_at_1000 |
|
value: 0.10300000000000001 |
|
- type: precision_at_3 |
|
value: 14.216999999999999 |
|
- type: precision_at_5 |
|
value: 10.487 |
|
- type: recall_at_1 |
|
value: 21.624 |
|
- type: recall_at_10 |
|
value: 62.303 |
|
- type: recall_at_100 |
|
value: 88.124 |
|
- type: recall_at_1000 |
|
value: 97.08 |
|
- type: recall_at_3 |
|
value: 41.099999999999994 |
|
- type: recall_at_5 |
|
value: 50.381 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 91.06703146374831 |
|
- type: f1 |
|
value: 90.86867815863172 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (de) |
|
config: de |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 87.46970977740209 |
|
- type: f1 |
|
value: 86.36832872036588 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (es) |
|
config: es |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 89.26951300867245 |
|
- type: f1 |
|
value: 88.93561193959502 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (fr) |
|
config: fr |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 84.22799874725963 |
|
- type: f1 |
|
value: 84.30490069236556 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (hi) |
|
config: hi |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 86.02007888131948 |
|
- type: f1 |
|
value: 85.39376041027991 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (th) |
|
config: th |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 85.34900542495481 |
|
- type: f1 |
|
value: 85.39859673336713 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 71.078431372549 |
|
- type: f1 |
|
value: 53.45071102002276 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (de) |
|
config: de |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 65.85798816568047 |
|
- type: f1 |
|
value: 46.53112748993529 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (es) |
|
config: es |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 67.96864576384256 |
|
- type: f1 |
|
value: 45.966703022829506 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (fr) |
|
config: fr |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 61.31537738803633 |
|
- type: f1 |
|
value: 45.52601712835461 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (hi) |
|
config: hi |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 66.29616349946218 |
|
- type: f1 |
|
value: 47.24166485726613 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (th) |
|
config: th |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 67.51537070524412 |
|
- type: f1 |
|
value: 49.463476319014276 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (af) |
|
config: af |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.06792199058508 |
|
- type: f1 |
|
value: 54.094921857502285 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (am) |
|
config: am |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 51.960322797579025 |
|
- type: f1 |
|
value: 48.547371223370945 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ar) |
|
config: ar |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 54.425016812373904 |
|
- type: f1 |
|
value: 50.47069202054312 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (az) |
|
config: az |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 59.798251513113655 |
|
- type: f1 |
|
value: 57.05013069086648 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (bn) |
|
config: bn |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 59.37794216543376 |
|
- type: f1 |
|
value: 56.3607992649805 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (cy) |
|
config: cy |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 46.56018829858777 |
|
- type: f1 |
|
value: 43.87319715715134 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (da) |
|
config: da |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 62.9724277067922 |
|
- type: f1 |
|
value: 59.36480066245562 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (de) |
|
config: de |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 62.72696704774715 |
|
- type: f1 |
|
value: 59.143595966615855 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (el) |
|
config: el |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 61.5971755211836 |
|
- type: f1 |
|
value: 59.169445724946726 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 70.29589778076665 |
|
- type: f1 |
|
value: 67.7577001808977 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (es) |
|
config: es |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 66.31136516476126 |
|
- type: f1 |
|
value: 64.52032955983242 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fa) |
|
config: fa |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 65.54472091459314 |
|
- type: f1 |
|
value: 61.47903120066317 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fi) |
|
config: fi |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 61.45595158036314 |
|
- type: f1 |
|
value: 58.0891846024637 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 65.47074646940149 |
|
- type: f1 |
|
value: 62.84830858877575 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (he) |
|
config: he |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.046402151983855 |
|
- type: f1 |
|
value: 55.269074430533195 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hi) |
|
config: hi |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 64.06523201075991 |
|
- type: f1 |
|
value: 61.35339643021369 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hu) |
|
config: hu |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 60.954942837928726 |
|
- type: f1 |
|
value: 57.07035922704846 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hy) |
|
config: hy |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.404169468728995 |
|
- type: f1 |
|
value: 53.94259011839138 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (id) |
|
config: id |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 64.16610625420309 |
|
- type: f1 |
|
value: 61.337103431499365 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (is) |
|
config: is |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 52.262945527908535 |
|
- type: f1 |
|
value: 49.7610691598921 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (it) |
|
config: it |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 65.54472091459314 |
|
- type: f1 |
|
value: 63.469099018440154 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 68.22797579018157 |
|
- type: f1 |
|
value: 64.89098471083001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (jv) |
|
config: jv |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 50.847343644922674 |
|
- type: f1 |
|
value: 47.8536963168393 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ka) |
|
config: ka |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 48.45326160053799 |
|
- type: f1 |
|
value: 46.370078045805556 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (km) |
|
config: km |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 42.83120376597175 |
|
- type: f1 |
|
value: 39.68948521599982 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (kn) |
|
config: kn |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.5084061869536 |
|
- type: f1 |
|
value: 53.961876160401545 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ko) |
|
config: ko |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 63.7895090786819 |
|
- type: f1 |
|
value: 61.134223684676 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (lv) |
|
config: lv |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 54.98991257565569 |
|
- type: f1 |
|
value: 52.579862862826296 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ml) |
|
config: ml |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 61.90316072629456 |
|
- type: f1 |
|
value: 58.203024538290336 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (mn) |
|
config: mn |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.09818426361802 |
|
- type: f1 |
|
value: 54.22718458445455 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ms) |
|
config: ms |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.991257565568255 |
|
- type: f1 |
|
value: 55.84892781767421 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (my) |
|
config: my |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 55.901143241425686 |
|
- type: f1 |
|
value: 52.25264332199797 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nb) |
|
config: nb |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 61.96368527236047 |
|
- type: f1 |
|
value: 58.927243876153454 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nl) |
|
config: nl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 65.64223268325489 |
|
- type: f1 |
|
value: 62.340453718379706 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pl) |
|
config: pl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 64.52589105581708 |
|
- type: f1 |
|
value: 61.661113187022174 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pt) |
|
config: pt |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 66.84599865501009 |
|
- type: f1 |
|
value: 64.59342572873005 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ro) |
|
config: ro |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 60.81035642232684 |
|
- type: f1 |
|
value: 57.5169089806797 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ru) |
|
config: ru |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 65.75991930060525 |
|
- type: f1 |
|
value: 62.89531115787938 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sl) |
|
config: sl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 56.51647612642906 |
|
- type: f1 |
|
value: 54.33154780100043 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sq) |
|
config: sq |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.985877605917956 |
|
- type: f1 |
|
value: 54.46187524463802 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sv) |
|
config: sv |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 65.03026227303296 |
|
- type: f1 |
|
value: 62.34377392877748 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sw) |
|
config: sw |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 53.567585743106925 |
|
- type: f1 |
|
value: 50.73770655983206 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ta) |
|
config: ta |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.2595830531271 |
|
- type: f1 |
|
value: 53.657327291708626 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (te) |
|
config: te |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.82784129119032 |
|
- type: f1 |
|
value: 54.82518072665301 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (th) |
|
config: th |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 64.06859448554137 |
|
- type: f1 |
|
value: 63.00185280500495 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tl) |
|
config: tl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.91055817081371 |
|
- type: f1 |
|
value: 55.54116301224262 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tr) |
|
config: tr |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 63.54404841963686 |
|
- type: f1 |
|
value: 59.57650946030184 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ur) |
|
config: ur |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 59.27706792199059 |
|
- type: f1 |
|
value: 56.50010066083435 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (vi) |
|
config: vi |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 64.0719569603228 |
|
- type: f1 |
|
value: 61.817075925647956 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 68.23806321452591 |
|
- type: f1 |
|
value: 65.24917026029749 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-TW) |
|
config: zh-TW |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 62.53530598520511 |
|
- type: f1 |
|
value: 61.71131132295768 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (af) |
|
config: af |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 63.04303967720243 |
|
- type: f1 |
|
value: 60.3950085685985 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (am) |
|
config: am |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 56.83591123066578 |
|
- type: f1 |
|
value: 54.95059828830849 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ar) |
|
config: ar |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 59.62340282447881 |
|
- type: f1 |
|
value: 59.525159996498225 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (az) |
|
config: az |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 60.85406859448555 |
|
- type: f1 |
|
value: 59.129299095681276 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (bn) |
|
config: bn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.76731674512441 |
|
- type: f1 |
|
value: 61.159560612627715 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (cy) |
|
config: cy |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 50.181573638197705 |
|
- type: f1 |
|
value: 46.98422176289957 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (da) |
|
config: da |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 68.92737054472092 |
|
- type: f1 |
|
value: 67.69135611952979 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (de) |
|
config: de |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 69.18964357767318 |
|
- type: f1 |
|
value: 68.46106138186214 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (el) |
|
config: el |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 67.0712844653665 |
|
- type: f1 |
|
value: 66.75545422473901 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 74.4754539340955 |
|
- type: f1 |
|
value: 74.38427146553252 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (es) |
|
config: es |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 69.82515131136518 |
|
- type: f1 |
|
value: 69.63516462173847 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fa) |
|
config: fa |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 68.70880968392737 |
|
- type: f1 |
|
value: 67.45420662567926 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fi) |
|
config: fi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 65.95494283792871 |
|
- type: f1 |
|
value: 65.06191009049222 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 68.75924680564896 |
|
- type: f1 |
|
value: 68.30833379585945 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (he) |
|
config: he |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 63.806321452589096 |
|
- type: f1 |
|
value: 63.273048243765054 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hi) |
|
config: hi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 67.68997982515133 |
|
- type: f1 |
|
value: 66.54703855381324 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hu) |
|
config: hu |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 66.46940147948891 |
|
- type: f1 |
|
value: 65.91017343463396 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hy) |
|
config: hy |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 59.49899125756556 |
|
- type: f1 |
|
value: 57.90333469917769 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (id) |
|
config: id |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 67.9219905850706 |
|
- type: f1 |
|
value: 67.23169403762938 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (is) |
|
config: is |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 56.486213853396094 |
|
- type: f1 |
|
value: 54.85282355583758 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (it) |
|
config: it |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 69.04169468728985 |
|
- type: f1 |
|
value: 68.83833333320462 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 73.88702084734365 |
|
- type: f1 |
|
value: 74.04474735232299 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (jv) |
|
config: jv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 56.63416274377943 |
|
- type: f1 |
|
value: 55.11332211687954 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ka) |
|
config: ka |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 52.23604572965702 |
|
- type: f1 |
|
value: 50.86529813991055 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (km) |
|
config: km |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 46.62407531943511 |
|
- type: f1 |
|
value: 43.63485467164535 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (kn) |
|
config: kn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 59.15601882985878 |
|
- type: f1 |
|
value: 57.522837510959924 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ko) |
|
config: ko |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 69.84532616005382 |
|
- type: f1 |
|
value: 69.60021127179697 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (lv) |
|
config: lv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 56.65770006724949 |
|
- type: f1 |
|
value: 55.84219135523227 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ml) |
|
config: ml |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 66.53665097511768 |
|
- type: f1 |
|
value: 65.09087787792639 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (mn) |
|
config: mn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 59.31405514458642 |
|
- type: f1 |
|
value: 58.06135303831491 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ms) |
|
config: ms |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 64.88231338264964 |
|
- type: f1 |
|
value: 62.751099407787926 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (my) |
|
config: my |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 58.86012104909213 |
|
- type: f1 |
|
value: 56.29118323058282 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nb) |
|
config: nb |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 67.37390719569602 |
|
- type: f1 |
|
value: 66.27922244885102 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nl) |
|
config: nl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 70.8675184936113 |
|
- type: f1 |
|
value: 70.22146529932019 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pl) |
|
config: pl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 68.2212508406187 |
|
- type: f1 |
|
value: 67.77454802056282 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pt) |
|
config: pt |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 68.18090114324143 |
|
- type: f1 |
|
value: 68.03737625431621 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ro) |
|
config: ro |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 64.65030262273034 |
|
- type: f1 |
|
value: 63.792945486912856 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ru) |
|
config: ru |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 69.48217888365838 |
|
- type: f1 |
|
value: 69.96028997292197 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sl) |
|
config: sl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 60.17821116341627 |
|
- type: f1 |
|
value: 59.3935969827171 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sq) |
|
config: sq |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.86146603900471 |
|
- type: f1 |
|
value: 60.133692735032376 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sv) |
|
config: sv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 70.89441829186282 |
|
- type: f1 |
|
value: 70.03064076194089 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sw) |
|
config: sw |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 58.15063887020847 |
|
- type: f1 |
|
value: 56.23326278499678 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ta) |
|
config: ta |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 59.43846671149966 |
|
- type: f1 |
|
value: 57.70440450281974 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (te) |
|
config: te |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 60.8507061197041 |
|
- type: f1 |
|
value: 59.22916396061171 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (th) |
|
config: th |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 70.65568258238063 |
|
- type: f1 |
|
value: 69.90736239440633 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tl) |
|
config: tl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 60.8843308675185 |
|
- type: f1 |
|
value: 59.30332663713599 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tr) |
|
config: tr |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 68.05312710154674 |
|
- type: f1 |
|
value: 67.44024062594775 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ur) |
|
config: ur |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.111634162743776 |
|
- type: f1 |
|
value: 60.89083013084519 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (vi) |
|
config: vi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 67.44115669132482 |
|
- type: f1 |
|
value: 67.92227541674552 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 74.4687289845326 |
|
- type: f1 |
|
value: 74.16376793486025 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-TW) |
|
config: zh-TW |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 68.31876260928043 |
|
- type: f1 |
|
value: 68.5246745215607 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 30.90431696479766 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 27.259158476693774 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 30.28445330838555 |
|
- type: mrr |
|
value: 31.15758529581164 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.353 |
|
- type: map_at_10 |
|
value: 11.565 |
|
- type: map_at_100 |
|
value: 14.097000000000001 |
|
- type: map_at_1000 |
|
value: 15.354999999999999 |
|
- type: map_at_3 |
|
value: 8.749 |
|
- type: map_at_5 |
|
value: 9.974 |
|
- type: mrr_at_1 |
|
value: 42.105 |
|
- type: mrr_at_10 |
|
value: 50.589 |
|
- type: mrr_at_100 |
|
value: 51.187000000000005 |
|
- type: mrr_at_1000 |
|
value: 51.233 |
|
- type: mrr_at_3 |
|
value: 48.246 |
|
- type: mrr_at_5 |
|
value: 49.546 |
|
- type: ndcg_at_1 |
|
value: 40.402 |
|
- type: ndcg_at_10 |
|
value: 31.009999999999998 |
|
- type: ndcg_at_100 |
|
value: 28.026 |
|
- type: ndcg_at_1000 |
|
value: 36.905 |
|
- type: ndcg_at_3 |
|
value: 35.983 |
|
- type: ndcg_at_5 |
|
value: 33.764 |
|
- type: precision_at_1 |
|
value: 42.105 |
|
- type: precision_at_10 |
|
value: 22.786 |
|
- type: precision_at_100 |
|
value: 6.916 |
|
- type: precision_at_1000 |
|
value: 1.981 |
|
- type: precision_at_3 |
|
value: 33.333 |
|
- type: precision_at_5 |
|
value: 28.731 |
|
- type: recall_at_1 |
|
value: 5.353 |
|
- type: recall_at_10 |
|
value: 15.039 |
|
- type: recall_at_100 |
|
value: 27.348 |
|
- type: recall_at_1000 |
|
value: 59.453 |
|
- type: recall_at_3 |
|
value: 9.792 |
|
- type: recall_at_5 |
|
value: 11.882 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 33.852 |
|
- type: map_at_10 |
|
value: 48.924 |
|
- type: map_at_100 |
|
value: 49.854 |
|
- type: map_at_1000 |
|
value: 49.886 |
|
- type: map_at_3 |
|
value: 44.9 |
|
- type: map_at_5 |
|
value: 47.387 |
|
- type: mrr_at_1 |
|
value: 38.035999999999994 |
|
- type: mrr_at_10 |
|
value: 51.644 |
|
- type: mrr_at_100 |
|
value: 52.339 |
|
- type: mrr_at_1000 |
|
value: 52.35999999999999 |
|
- type: mrr_at_3 |
|
value: 48.421 |
|
- type: mrr_at_5 |
|
value: 50.468999999999994 |
|
- type: ndcg_at_1 |
|
value: 38.007000000000005 |
|
- type: ndcg_at_10 |
|
value: 56.293000000000006 |
|
- type: ndcg_at_100 |
|
value: 60.167 |
|
- type: ndcg_at_1000 |
|
value: 60.916000000000004 |
|
- type: ndcg_at_3 |
|
value: 48.903999999999996 |
|
- type: ndcg_at_5 |
|
value: 52.978 |
|
- type: precision_at_1 |
|
value: 38.007000000000005 |
|
- type: precision_at_10 |
|
value: 9.041 |
|
- type: precision_at_100 |
|
value: 1.1199999999999999 |
|
- type: precision_at_1000 |
|
value: 0.11900000000000001 |
|
- type: precision_at_3 |
|
value: 22.084 |
|
- type: precision_at_5 |
|
value: 15.608 |
|
- type: recall_at_1 |
|
value: 33.852 |
|
- type: recall_at_10 |
|
value: 75.893 |
|
- type: recall_at_100 |
|
value: 92.589 |
|
- type: recall_at_1000 |
|
value: 98.153 |
|
- type: recall_at_3 |
|
value: 56.969 |
|
- type: recall_at_5 |
|
value: 66.283 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 69.174 |
|
- type: map_at_10 |
|
value: 82.891 |
|
- type: map_at_100 |
|
value: 83.545 |
|
- type: map_at_1000 |
|
value: 83.56700000000001 |
|
- type: map_at_3 |
|
value: 79.944 |
|
- type: map_at_5 |
|
value: 81.812 |
|
- type: mrr_at_1 |
|
value: 79.67999999999999 |
|
- type: mrr_at_10 |
|
value: 86.279 |
|
- type: mrr_at_100 |
|
value: 86.39 |
|
- type: mrr_at_1000 |
|
value: 86.392 |
|
- type: mrr_at_3 |
|
value: 85.21 |
|
- type: mrr_at_5 |
|
value: 85.92999999999999 |
|
- type: ndcg_at_1 |
|
value: 79.69000000000001 |
|
- type: ndcg_at_10 |
|
value: 86.929 |
|
- type: ndcg_at_100 |
|
value: 88.266 |
|
- type: ndcg_at_1000 |
|
value: 88.428 |
|
- type: ndcg_at_3 |
|
value: 83.899 |
|
- type: ndcg_at_5 |
|
value: 85.56700000000001 |
|
- type: precision_at_1 |
|
value: 79.69000000000001 |
|
- type: precision_at_10 |
|
value: 13.161000000000001 |
|
- type: precision_at_100 |
|
value: 1.513 |
|
- type: precision_at_1000 |
|
value: 0.156 |
|
- type: precision_at_3 |
|
value: 36.603 |
|
- type: precision_at_5 |
|
value: 24.138 |
|
- type: recall_at_1 |
|
value: 69.174 |
|
- type: recall_at_10 |
|
value: 94.529 |
|
- type: recall_at_100 |
|
value: 99.15 |
|
- type: recall_at_1000 |
|
value: 99.925 |
|
- type: recall_at_3 |
|
value: 85.86200000000001 |
|
- type: recall_at_5 |
|
value: 90.501 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 39.13064340585255 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 58.97884249325877 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.4680000000000004 |
|
- type: map_at_10 |
|
value: 7.865 |
|
- type: map_at_100 |
|
value: 9.332 |
|
- type: map_at_1000 |
|
value: 9.587 |
|
- type: map_at_3 |
|
value: 5.800000000000001 |
|
- type: map_at_5 |
|
value: 6.8790000000000004 |
|
- type: mrr_at_1 |
|
value: 17.0 |
|
- type: mrr_at_10 |
|
value: 25.629 |
|
- type: mrr_at_100 |
|
value: 26.806 |
|
- type: mrr_at_1000 |
|
value: 26.889000000000003 |
|
- type: mrr_at_3 |
|
value: 22.8 |
|
- type: mrr_at_5 |
|
value: 24.26 |
|
- type: ndcg_at_1 |
|
value: 17.0 |
|
- type: ndcg_at_10 |
|
value: 13.895 |
|
- type: ndcg_at_100 |
|
value: 20.491999999999997 |
|
- type: ndcg_at_1000 |
|
value: 25.759999999999998 |
|
- type: ndcg_at_3 |
|
value: 13.347999999999999 |
|
- type: ndcg_at_5 |
|
value: 11.61 |
|
- type: precision_at_1 |
|
value: 17.0 |
|
- type: precision_at_10 |
|
value: 7.090000000000001 |
|
- type: precision_at_100 |
|
value: 1.669 |
|
- type: precision_at_1000 |
|
value: 0.294 |
|
- type: precision_at_3 |
|
value: 12.3 |
|
- type: precision_at_5 |
|
value: 10.02 |
|
- type: recall_at_1 |
|
value: 3.4680000000000004 |
|
- type: recall_at_10 |
|
value: 14.363000000000001 |
|
- type: recall_at_100 |
|
value: 33.875 |
|
- type: recall_at_1000 |
|
value: 59.711999999999996 |
|
- type: recall_at_3 |
|
value: 7.483 |
|
- type: recall_at_5 |
|
value: 10.173 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.04084311714061 |
|
- type: cos_sim_spearman |
|
value: 77.51342467443078 |
|
- type: euclidean_pearson |
|
value: 80.0321166028479 |
|
- type: euclidean_spearman |
|
value: 77.29249114733226 |
|
- type: manhattan_pearson |
|
value: 80.03105964262431 |
|
- type: manhattan_spearman |
|
value: 77.22373689514794 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.1680158034387 |
|
- type: cos_sim_spearman |
|
value: 76.55983344071117 |
|
- type: euclidean_pearson |
|
value: 79.75266678300143 |
|
- type: euclidean_spearman |
|
value: 75.34516823467025 |
|
- type: manhattan_pearson |
|
value: 79.75959151517357 |
|
- type: manhattan_spearman |
|
value: 75.42330344141912 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 76.48898993209346 |
|
- type: cos_sim_spearman |
|
value: 76.96954120323366 |
|
- type: euclidean_pearson |
|
value: 76.94139109279668 |
|
- type: euclidean_spearman |
|
value: 76.85860283201711 |
|
- type: manhattan_pearson |
|
value: 76.6944095091912 |
|
- type: manhattan_spearman |
|
value: 76.61096912972553 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 77.85082366246944 |
|
- type: cos_sim_spearman |
|
value: 75.52053350101731 |
|
- type: euclidean_pearson |
|
value: 77.1165845070926 |
|
- type: euclidean_spearman |
|
value: 75.31216065884388 |
|
- type: manhattan_pearson |
|
value: 77.06193941833494 |
|
- type: manhattan_spearman |
|
value: 75.31003701700112 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.36305246526497 |
|
- type: cos_sim_spearman |
|
value: 87.11704613927415 |
|
- type: euclidean_pearson |
|
value: 86.04199125810939 |
|
- type: euclidean_spearman |
|
value: 86.51117572414263 |
|
- type: manhattan_pearson |
|
value: 86.0805106816633 |
|
- type: manhattan_spearman |
|
value: 86.52798366512229 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.18536255599724 |
|
- type: cos_sim_spearman |
|
value: 83.63377151025418 |
|
- type: euclidean_pearson |
|
value: 83.24657467993141 |
|
- type: euclidean_spearman |
|
value: 84.02751481993825 |
|
- type: manhattan_pearson |
|
value: 83.11941806582371 |
|
- type: manhattan_spearman |
|
value: 83.84251281019304 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ko-ko) |
|
config: ko-ko |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.95816528475514 |
|
- type: cos_sim_spearman |
|
value: 78.86607380120462 |
|
- type: euclidean_pearson |
|
value: 78.51268699230545 |
|
- type: euclidean_spearman |
|
value: 79.11649316502229 |
|
- type: manhattan_pearson |
|
value: 78.32367302808157 |
|
- type: manhattan_spearman |
|
value: 78.90277699624637 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ar-ar) |
|
config: ar-ar |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 72.89126914997624 |
|
- type: cos_sim_spearman |
|
value: 73.0296921832678 |
|
- type: euclidean_pearson |
|
value: 71.50385903677738 |
|
- type: euclidean_spearman |
|
value: 73.13368899716289 |
|
- type: manhattan_pearson |
|
value: 71.47421463379519 |
|
- type: manhattan_spearman |
|
value: 73.03383242946575 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-ar) |
|
config: en-ar |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 59.22923684492637 |
|
- type: cos_sim_spearman |
|
value: 57.41013211368396 |
|
- type: euclidean_pearson |
|
value: 61.21107388080905 |
|
- type: euclidean_spearman |
|
value: 60.07620768697254 |
|
- type: manhattan_pearson |
|
value: 59.60157142786555 |
|
- type: manhattan_spearman |
|
value: 59.14069604103739 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-de) |
|
config: en-de |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 76.24345978774299 |
|
- type: cos_sim_spearman |
|
value: 77.24225743830719 |
|
- type: euclidean_pearson |
|
value: 76.66226095469165 |
|
- type: euclidean_spearman |
|
value: 77.60708820493146 |
|
- type: manhattan_pearson |
|
value: 76.05303324760429 |
|
- type: manhattan_spearman |
|
value: 76.96353149912348 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.50879160160852 |
|
- type: cos_sim_spearman |
|
value: 86.43594662965224 |
|
- type: euclidean_pearson |
|
value: 86.06846012826577 |
|
- type: euclidean_spearman |
|
value: 86.02041395794136 |
|
- type: manhattan_pearson |
|
value: 86.10916255616904 |
|
- type: manhattan_spearman |
|
value: 86.07346068198953 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-tr) |
|
config: en-tr |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 58.39803698977196 |
|
- type: cos_sim_spearman |
|
value: 55.96910950423142 |
|
- type: euclidean_pearson |
|
value: 58.17941175613059 |
|
- type: euclidean_spearman |
|
value: 55.03019330522745 |
|
- type: manhattan_pearson |
|
value: 57.333358138183286 |
|
- type: manhattan_spearman |
|
value: 54.04614023149965 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-en) |
|
config: es-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 70.98304089637197 |
|
- type: cos_sim_spearman |
|
value: 72.44071656215888 |
|
- type: euclidean_pearson |
|
value: 72.19224359033983 |
|
- type: euclidean_spearman |
|
value: 73.89871188913025 |
|
- type: manhattan_pearson |
|
value: 71.21098311547406 |
|
- type: manhattan_spearman |
|
value: 72.93405764824821 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-es) |
|
config: es-es |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.99792397466308 |
|
- type: cos_sim_spearman |
|
value: 84.83824377879495 |
|
- type: euclidean_pearson |
|
value: 85.70043288694438 |
|
- type: euclidean_spearman |
|
value: 84.70627558703686 |
|
- type: manhattan_pearson |
|
value: 85.89570850150801 |
|
- type: manhattan_spearman |
|
value: 84.95806105313007 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (fr-en) |
|
config: fr-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 72.21850322994712 |
|
- type: cos_sim_spearman |
|
value: 72.28669398117248 |
|
- type: euclidean_pearson |
|
value: 73.40082510412948 |
|
- type: euclidean_spearman |
|
value: 73.0326539281865 |
|
- type: manhattan_pearson |
|
value: 71.8659633964841 |
|
- type: manhattan_spearman |
|
value: 71.57817425823303 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (it-en) |
|
config: it-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 75.80921368595645 |
|
- type: cos_sim_spearman |
|
value: 77.33209091229315 |
|
- type: euclidean_pearson |
|
value: 76.53159540154829 |
|
- type: euclidean_spearman |
|
value: 78.17960842810093 |
|
- type: manhattan_pearson |
|
value: 76.13530186637601 |
|
- type: manhattan_spearman |
|
value: 78.00701437666875 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (nl-en) |
|
config: nl-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 74.74980608267349 |
|
- type: cos_sim_spearman |
|
value: 75.37597374318821 |
|
- type: euclidean_pearson |
|
value: 74.90506081911661 |
|
- type: euclidean_spearman |
|
value: 75.30151613124521 |
|
- type: manhattan_pearson |
|
value: 74.62642745918002 |
|
- type: manhattan_spearman |
|
value: 75.18619716592303 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 59.632662289205584 |
|
- type: cos_sim_spearman |
|
value: 60.938543391610914 |
|
- type: euclidean_pearson |
|
value: 62.113200529767056 |
|
- type: euclidean_spearman |
|
value: 61.410312633261164 |
|
- type: manhattan_pearson |
|
value: 61.75494698945686 |
|
- type: manhattan_spearman |
|
value: 60.92726195322362 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de) |
|
config: de |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 45.283470551557244 |
|
- type: cos_sim_spearman |
|
value: 53.44833015864201 |
|
- type: euclidean_pearson |
|
value: 41.17892011120893 |
|
- type: euclidean_spearman |
|
value: 53.81441383126767 |
|
- type: manhattan_pearson |
|
value: 41.17482200420659 |
|
- type: manhattan_spearman |
|
value: 53.82180269276363 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es) |
|
config: es |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 60.5069165306236 |
|
- type: cos_sim_spearman |
|
value: 66.87803259033826 |
|
- type: euclidean_pearson |
|
value: 63.5428979418236 |
|
- type: euclidean_spearman |
|
value: 66.9293576586897 |
|
- type: manhattan_pearson |
|
value: 63.59789526178922 |
|
- type: manhattan_spearman |
|
value: 66.86555009875066 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl) |
|
config: pl |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 28.23026196280264 |
|
- type: cos_sim_spearman |
|
value: 35.79397812652861 |
|
- type: euclidean_pearson |
|
value: 17.828102102767353 |
|
- type: euclidean_spearman |
|
value: 35.721501145568894 |
|
- type: manhattan_pearson |
|
value: 17.77134274219677 |
|
- type: manhattan_spearman |
|
value: 35.98107902846267 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (tr) |
|
config: tr |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 56.51946541393812 |
|
- type: cos_sim_spearman |
|
value: 63.714686006214485 |
|
- type: euclidean_pearson |
|
value: 58.32104651305898 |
|
- type: euclidean_spearman |
|
value: 62.237110895702216 |
|
- type: manhattan_pearson |
|
value: 58.579416468759185 |
|
- type: manhattan_spearman |
|
value: 62.459738981727 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ar) |
|
config: ar |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 48.76009839569795 |
|
- type: cos_sim_spearman |
|
value: 56.65188431953149 |
|
- type: euclidean_pearson |
|
value: 50.997682160915595 |
|
- type: euclidean_spearman |
|
value: 55.99910008818135 |
|
- type: manhattan_pearson |
|
value: 50.76220659606342 |
|
- type: manhattan_spearman |
|
value: 55.517347595391456 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ru) |
|
config: ru |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 51.232731157702425 |
|
- type: cos_sim_spearman |
|
value: 59.89531877658345 |
|
- type: euclidean_pearson |
|
value: 49.937914570348376 |
|
- type: euclidean_spearman |
|
value: 60.220905659334036 |
|
- type: manhattan_pearson |
|
value: 50.00987996844193 |
|
- type: manhattan_spearman |
|
value: 60.081341480977926 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 54.717524559088005 |
|
- type: cos_sim_spearman |
|
value: 66.83570886252286 |
|
- type: euclidean_pearson |
|
value: 58.41338625505467 |
|
- type: euclidean_spearman |
|
value: 66.68991427704938 |
|
- type: manhattan_pearson |
|
value: 58.78638572916807 |
|
- type: manhattan_spearman |
|
value: 66.58684161046335 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr) |
|
config: fr |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 73.2962042954962 |
|
- type: cos_sim_spearman |
|
value: 76.58255504852025 |
|
- type: euclidean_pearson |
|
value: 75.70983192778257 |
|
- type: euclidean_spearman |
|
value: 77.4547684870542 |
|
- type: manhattan_pearson |
|
value: 75.75565853870485 |
|
- type: manhattan_spearman |
|
value: 76.90208974949428 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-en) |
|
config: de-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 54.47396266924846 |
|
- type: cos_sim_spearman |
|
value: 56.492267162048606 |
|
- type: euclidean_pearson |
|
value: 55.998505203070195 |
|
- type: euclidean_spearman |
|
value: 56.46447012960222 |
|
- type: manhattan_pearson |
|
value: 54.873172394430995 |
|
- type: manhattan_spearman |
|
value: 56.58111534551218 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-en) |
|
config: es-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 69.87177267688686 |
|
- type: cos_sim_spearman |
|
value: 74.57160943395763 |
|
- type: euclidean_pearson |
|
value: 70.88330406826788 |
|
- type: euclidean_spearman |
|
value: 74.29767636038422 |
|
- type: manhattan_pearson |
|
value: 71.38245248369536 |
|
- type: manhattan_spearman |
|
value: 74.53102232732175 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (it) |
|
config: it |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 72.80225656959544 |
|
- type: cos_sim_spearman |
|
value: 76.52646173725735 |
|
- type: euclidean_pearson |
|
value: 73.95710720200799 |
|
- type: euclidean_spearman |
|
value: 76.54040031984111 |
|
- type: manhattan_pearson |
|
value: 73.89679971946774 |
|
- type: manhattan_spearman |
|
value: 76.60886958161574 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl-en) |
|
config: pl-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 70.70844249898789 |
|
- type: cos_sim_spearman |
|
value: 72.68571783670241 |
|
- type: euclidean_pearson |
|
value: 72.38800772441031 |
|
- type: euclidean_spearman |
|
value: 72.86804422703312 |
|
- type: manhattan_pearson |
|
value: 71.29840508203515 |
|
- type: manhattan_spearman |
|
value: 71.86264441749513 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh-en) |
|
config: zh-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 58.647478923935694 |
|
- type: cos_sim_spearman |
|
value: 63.74453623540931 |
|
- type: euclidean_pearson |
|
value: 59.60138032437505 |
|
- type: euclidean_spearman |
|
value: 63.947930832166065 |
|
- type: manhattan_pearson |
|
value: 58.59735509491861 |
|
- type: manhattan_spearman |
|
value: 62.082503844627404 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-it) |
|
config: es-it |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 65.8722516867162 |
|
- type: cos_sim_spearman |
|
value: 71.81208592523012 |
|
- type: euclidean_pearson |
|
value: 67.95315252165956 |
|
- type: euclidean_spearman |
|
value: 73.00749822046009 |
|
- type: manhattan_pearson |
|
value: 68.07884688638924 |
|
- type: manhattan_spearman |
|
value: 72.34210325803069 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-fr) |
|
config: de-fr |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 54.5405814240949 |
|
- type: cos_sim_spearman |
|
value: 60.56838649023775 |
|
- type: euclidean_pearson |
|
value: 53.011731611314104 |
|
- type: euclidean_spearman |
|
value: 58.533194841668426 |
|
- type: manhattan_pearson |
|
value: 53.623067729338494 |
|
- type: manhattan_spearman |
|
value: 58.018756154446926 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-pl) |
|
config: de-pl |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 13.611046866216112 |
|
- type: cos_sim_spearman |
|
value: 28.238192909158492 |
|
- type: euclidean_pearson |
|
value: 22.16189199885129 |
|
- type: euclidean_spearman |
|
value: 35.012895679076564 |
|
- type: manhattan_pearson |
|
value: 21.969771178698387 |
|
- type: manhattan_spearman |
|
value: 32.456985088607475 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr-pl) |
|
config: fr-pl |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 74.58077407011655 |
|
- type: cos_sim_spearman |
|
value: 84.51542547285167 |
|
- type: euclidean_pearson |
|
value: 74.64613843596234 |
|
- type: euclidean_spearman |
|
value: 84.51542547285167 |
|
- type: manhattan_pearson |
|
value: 75.15335973101396 |
|
- type: manhattan_spearman |
|
value: 84.51542547285167 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.0739825531578 |
|
- type: cos_sim_spearman |
|
value: 84.01057479311115 |
|
- type: euclidean_pearson |
|
value: 83.85453227433344 |
|
- type: euclidean_spearman |
|
value: 84.01630226898655 |
|
- type: manhattan_pearson |
|
value: 83.75323603028978 |
|
- type: manhattan_spearman |
|
value: 83.89677983727685 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 78.12945623123957 |
|
- type: mrr |
|
value: 93.87738713719106 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 52.983000000000004 |
|
- type: map_at_10 |
|
value: 62.946000000000005 |
|
- type: map_at_100 |
|
value: 63.514 |
|
- type: map_at_1000 |
|
value: 63.554 |
|
- type: map_at_3 |
|
value: 60.183 |
|
- type: map_at_5 |
|
value: 61.672000000000004 |
|
- type: mrr_at_1 |
|
value: 55.667 |
|
- type: mrr_at_10 |
|
value: 64.522 |
|
- type: mrr_at_100 |
|
value: 64.957 |
|
- type: mrr_at_1000 |
|
value: 64.995 |
|
- type: mrr_at_3 |
|
value: 62.388999999999996 |
|
- type: mrr_at_5 |
|
value: 63.639 |
|
- type: ndcg_at_1 |
|
value: 55.667 |
|
- type: ndcg_at_10 |
|
value: 67.704 |
|
- type: ndcg_at_100 |
|
value: 70.299 |
|
- type: ndcg_at_1000 |
|
value: 71.241 |
|
- type: ndcg_at_3 |
|
value: 62.866 |
|
- type: ndcg_at_5 |
|
value: 65.16999999999999 |
|
- type: precision_at_1 |
|
value: 55.667 |
|
- type: precision_at_10 |
|
value: 9.033 |
|
- type: precision_at_100 |
|
value: 1.053 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 24.444 |
|
- type: precision_at_5 |
|
value: 16.133 |
|
- type: recall_at_1 |
|
value: 52.983000000000004 |
|
- type: recall_at_10 |
|
value: 80.656 |
|
- type: recall_at_100 |
|
value: 92.5 |
|
- type: recall_at_1000 |
|
value: 99.667 |
|
- type: recall_at_3 |
|
value: 67.744 |
|
- type: recall_at_5 |
|
value: 73.433 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.72772277227723 |
|
- type: cos_sim_ap |
|
value: 92.17845897992215 |
|
- type: cos_sim_f1 |
|
value: 85.9746835443038 |
|
- type: cos_sim_precision |
|
value: 87.07692307692308 |
|
- type: cos_sim_recall |
|
value: 84.89999999999999 |
|
- type: dot_accuracy |
|
value: 99.3039603960396 |
|
- type: dot_ap |
|
value: 60.70244020124878 |
|
- type: dot_f1 |
|
value: 59.92742353551063 |
|
- type: dot_precision |
|
value: 62.21743810548978 |
|
- type: dot_recall |
|
value: 57.8 |
|
- type: euclidean_accuracy |
|
value: 99.71683168316832 |
|
- type: euclidean_ap |
|
value: 91.53997039964659 |
|
- type: euclidean_f1 |
|
value: 84.88372093023257 |
|
- type: euclidean_precision |
|
value: 90.02242152466367 |
|
- type: euclidean_recall |
|
value: 80.30000000000001 |
|
- type: manhattan_accuracy |
|
value: 99.72376237623763 |
|
- type: manhattan_ap |
|
value: 91.80756777790289 |
|
- type: manhattan_f1 |
|
value: 85.48468106479157 |
|
- type: manhattan_precision |
|
value: 85.8728557013118 |
|
- type: manhattan_recall |
|
value: 85.1 |
|
- type: max_accuracy |
|
value: 99.72772277227723 |
|
- type: max_ap |
|
value: 92.17845897992215 |
|
- type: max_f1 |
|
value: 85.9746835443038 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 53.52464042600003 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 32.071631948736 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 49.19552407604654 |
|
- type: mrr |
|
value: 49.95269130379425 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 29.345293033095427 |
|
- type: cos_sim_spearman |
|
value: 29.976931423258403 |
|
- type: dot_pearson |
|
value: 27.047078008958408 |
|
- type: dot_spearman |
|
value: 27.75894368380218 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.22 |
|
- type: map_at_10 |
|
value: 1.706 |
|
- type: map_at_100 |
|
value: 9.634 |
|
- type: map_at_1000 |
|
value: 23.665 |
|
- type: map_at_3 |
|
value: 0.5950000000000001 |
|
- type: map_at_5 |
|
value: 0.95 |
|
- type: mrr_at_1 |
|
value: 86.0 |
|
- type: mrr_at_10 |
|
value: 91.8 |
|
- type: mrr_at_100 |
|
value: 91.8 |
|
- type: mrr_at_1000 |
|
value: 91.8 |
|
- type: mrr_at_3 |
|
value: 91.0 |
|
- type: mrr_at_5 |
|
value: 91.8 |
|
- type: ndcg_at_1 |
|
value: 80.0 |
|
- type: ndcg_at_10 |
|
value: 72.573 |
|
- type: ndcg_at_100 |
|
value: 53.954 |
|
- type: ndcg_at_1000 |
|
value: 47.760999999999996 |
|
- type: ndcg_at_3 |
|
value: 76.173 |
|
- type: ndcg_at_5 |
|
value: 75.264 |
|
- type: precision_at_1 |
|
value: 86.0 |
|
- type: precision_at_10 |
|
value: 76.4 |
|
- type: precision_at_100 |
|
value: 55.50000000000001 |
|
- type: precision_at_1000 |
|
value: 21.802 |
|
- type: precision_at_3 |
|
value: 81.333 |
|
- type: precision_at_5 |
|
value: 80.4 |
|
- type: recall_at_1 |
|
value: 0.22 |
|
- type: recall_at_10 |
|
value: 1.925 |
|
- type: recall_at_100 |
|
value: 12.762 |
|
- type: recall_at_1000 |
|
value: 44.946000000000005 |
|
- type: recall_at_3 |
|
value: 0.634 |
|
- type: recall_at_5 |
|
value: 1.051 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (sqi-eng) |
|
config: sqi-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 91.0 |
|
- type: f1 |
|
value: 88.55666666666666 |
|
- type: precision |
|
value: 87.46166666666667 |
|
- type: recall |
|
value: 91.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (fry-eng) |
|
config: fry-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 57.22543352601156 |
|
- type: f1 |
|
value: 51.03220478943021 |
|
- type: precision |
|
value: 48.8150289017341 |
|
- type: recall |
|
value: 57.22543352601156 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kur-eng) |
|
config: kur-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 46.58536585365854 |
|
- type: f1 |
|
value: 39.66870798578116 |
|
- type: precision |
|
value: 37.416085946573745 |
|
- type: recall |
|
value: 46.58536585365854 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tur-eng) |
|
config: tur-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 89.7 |
|
- type: f1 |
|
value: 86.77999999999999 |
|
- type: precision |
|
value: 85.45333333333332 |
|
- type: recall |
|
value: 89.7 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (deu-eng) |
|
config: deu-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 97.39999999999999 |
|
- type: f1 |
|
value: 96.58333333333331 |
|
- type: precision |
|
value: 96.2 |
|
- type: recall |
|
value: 97.39999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (nld-eng) |
|
config: nld-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 92.4 |
|
- type: f1 |
|
value: 90.3 |
|
- type: precision |
|
value: 89.31666666666668 |
|
- type: recall |
|
value: 92.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ron-eng) |
|
config: ron-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 86.9 |
|
- type: f1 |
|
value: 83.67190476190476 |
|
- type: precision |
|
value: 82.23333333333332 |
|
- type: recall |
|
value: 86.9 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ang-eng) |
|
config: ang-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 50.0 |
|
- type: f1 |
|
value: 42.23229092632078 |
|
- type: precision |
|
value: 39.851634683724235 |
|
- type: recall |
|
value: 50.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ido-eng) |
|
config: ido-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 76.3 |
|
- type: f1 |
|
value: 70.86190476190477 |
|
- type: precision |
|
value: 68.68777777777777 |
|
- type: recall |
|
value: 76.3 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (jav-eng) |
|
config: jav-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 57.073170731707314 |
|
- type: f1 |
|
value: 50.658958927251604 |
|
- type: precision |
|
value: 48.26480836236933 |
|
- type: recall |
|
value: 57.073170731707314 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (isl-eng) |
|
config: isl-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 68.2 |
|
- type: f1 |
|
value: 62.156507936507936 |
|
- type: precision |
|
value: 59.84964285714286 |
|
- type: recall |
|
value: 68.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (slv-eng) |
|
config: slv-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 77.52126366950182 |
|
- type: f1 |
|
value: 72.8496210148701 |
|
- type: precision |
|
value: 70.92171498003819 |
|
- type: recall |
|
value: 77.52126366950182 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cym-eng) |
|
config: cym-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 70.78260869565217 |
|
- type: f1 |
|
value: 65.32422360248447 |
|
- type: precision |
|
value: 63.063067367415194 |
|
- type: recall |
|
value: 70.78260869565217 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kaz-eng) |
|
config: kaz-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 78.43478260869566 |
|
- type: f1 |
|
value: 73.02608695652172 |
|
- type: precision |
|
value: 70.63768115942028 |
|
- type: recall |
|
value: 78.43478260869566 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (est-eng) |
|
config: est-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 60.9 |
|
- type: f1 |
|
value: 55.309753694581275 |
|
- type: precision |
|
value: 53.130476190476195 |
|
- type: recall |
|
value: 60.9 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (heb-eng) |
|
config: heb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 72.89999999999999 |
|
- type: f1 |
|
value: 67.92023809523809 |
|
- type: precision |
|
value: 65.82595238095237 |
|
- type: recall |
|
value: 72.89999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (gla-eng) |
|
config: gla-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 46.80337756332931 |
|
- type: f1 |
|
value: 39.42174900558496 |
|
- type: precision |
|
value: 36.97101116280851 |
|
- type: recall |
|
value: 46.80337756332931 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (mar-eng) |
|
config: mar-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 89.8 |
|
- type: f1 |
|
value: 86.79 |
|
- type: precision |
|
value: 85.375 |
|
- type: recall |
|
value: 89.8 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (lat-eng) |
|
config: lat-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 47.199999999999996 |
|
- type: f1 |
|
value: 39.95484348984349 |
|
- type: precision |
|
value: 37.561071428571424 |
|
- type: recall |
|
value: 47.199999999999996 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (bel-eng) |
|
config: bel-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 87.8 |
|
- type: f1 |
|
value: 84.68190476190475 |
|
- type: precision |
|
value: 83.275 |
|
- type: recall |
|
value: 87.8 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (pms-eng) |
|
config: pms-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 48.76190476190476 |
|
- type: f1 |
|
value: 42.14965986394558 |
|
- type: precision |
|
value: 39.96743626743626 |
|
- type: recall |
|
value: 48.76190476190476 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (gle-eng) |
|
config: gle-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 66.10000000000001 |
|
- type: f1 |
|
value: 59.58580086580086 |
|
- type: precision |
|
value: 57.150238095238095 |
|
- type: recall |
|
value: 66.10000000000001 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (pes-eng) |
|
config: pes-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 87.3 |
|
- type: f1 |
|
value: 84.0 |
|
- type: precision |
|
value: 82.48666666666666 |
|
- type: recall |
|
value: 87.3 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (nob-eng) |
|
config: nob-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 90.4 |
|
- type: f1 |
|
value: 87.79523809523809 |
|
- type: precision |
|
value: 86.6 |
|
- type: recall |
|
value: 90.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (bul-eng) |
|
config: bul-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 87.0 |
|
- type: f1 |
|
value: 83.81 |
|
- type: precision |
|
value: 82.36666666666666 |
|
- type: recall |
|
value: 87.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cbk-eng) |
|
config: cbk-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 63.9 |
|
- type: f1 |
|
value: 57.76533189033189 |
|
- type: precision |
|
value: 55.50595238095239 |
|
- type: recall |
|
value: 63.9 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (hun-eng) |
|
config: hun-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 76.1 |
|
- type: f1 |
|
value: 71.83690476190478 |
|
- type: precision |
|
value: 70.04928571428573 |
|
- type: recall |
|
value: 76.1 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (uig-eng) |
|
config: uig-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 66.3 |
|
- type: f1 |
|
value: 59.32626984126984 |
|
- type: precision |
|
value: 56.62535714285713 |
|
- type: recall |
|
value: 66.3 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (rus-eng) |
|
config: rus-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 90.60000000000001 |
|
- type: f1 |
|
value: 87.96333333333334 |
|
- type: precision |
|
value: 86.73333333333333 |
|
- type: recall |
|
value: 90.60000000000001 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (spa-eng) |
|
config: spa-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 93.10000000000001 |
|
- type: f1 |
|
value: 91.10000000000001 |
|
- type: precision |
|
value: 90.16666666666666 |
|
- type: recall |
|
value: 93.10000000000001 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (hye-eng) |
|
config: hye-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 85.71428571428571 |
|
- type: f1 |
|
value: 82.29142600436403 |
|
- type: precision |
|
value: 80.8076626877166 |
|
- type: recall |
|
value: 85.71428571428571 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tel-eng) |
|
config: tel-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 88.88888888888889 |
|
- type: f1 |
|
value: 85.7834757834758 |
|
- type: precision |
|
value: 84.43732193732193 |
|
- type: recall |
|
value: 88.88888888888889 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (afr-eng) |
|
config: afr-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 88.5 |
|
- type: f1 |
|
value: 85.67190476190476 |
|
- type: precision |
|
value: 84.43333333333332 |
|
- type: recall |
|
value: 88.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (mon-eng) |
|
config: mon-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 82.72727272727273 |
|
- type: f1 |
|
value: 78.21969696969695 |
|
- type: precision |
|
value: 76.18181818181819 |
|
- type: recall |
|
value: 82.72727272727273 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (arz-eng) |
|
config: arz-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 61.0062893081761 |
|
- type: f1 |
|
value: 55.13976240391334 |
|
- type: precision |
|
value: 52.92112499659669 |
|
- type: recall |
|
value: 61.0062893081761 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (hrv-eng) |
|
config: hrv-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 89.5 |
|
- type: f1 |
|
value: 86.86666666666666 |
|
- type: precision |
|
value: 85.69166666666668 |
|
- type: recall |
|
value: 89.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (nov-eng) |
|
config: nov-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 73.54085603112841 |
|
- type: f1 |
|
value: 68.56031128404669 |
|
- type: precision |
|
value: 66.53047989623866 |
|
- type: recall |
|
value: 73.54085603112841 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (gsw-eng) |
|
config: gsw-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 43.58974358974359 |
|
- type: f1 |
|
value: 36.45299145299145 |
|
- type: precision |
|
value: 33.81155881155882 |
|
- type: recall |
|
value: 43.58974358974359 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (nds-eng) |
|
config: nds-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 59.599999999999994 |
|
- type: f1 |
|
value: 53.264689754689755 |
|
- type: precision |
|
value: 50.869166666666665 |
|
- type: recall |
|
value: 59.599999999999994 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ukr-eng) |
|
config: ukr-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 85.2 |
|
- type: f1 |
|
value: 81.61666666666665 |
|
- type: precision |
|
value: 80.02833333333335 |
|
- type: recall |
|
value: 85.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (uzb-eng) |
|
config: uzb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 63.78504672897196 |
|
- type: f1 |
|
value: 58.00029669188548 |
|
- type: precision |
|
value: 55.815809968847354 |
|
- type: recall |
|
value: 63.78504672897196 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (lit-eng) |
|
config: lit-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 66.5 |
|
- type: f1 |
|
value: 61.518333333333345 |
|
- type: precision |
|
value: 59.622363699102834 |
|
- type: recall |
|
value: 66.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ina-eng) |
|
config: ina-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 88.6 |
|
- type: f1 |
|
value: 85.60222222222221 |
|
- type: precision |
|
value: 84.27916666666665 |
|
- type: recall |
|
value: 88.6 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (lfn-eng) |
|
config: lfn-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 58.699999999999996 |
|
- type: f1 |
|
value: 52.732375957375965 |
|
- type: precision |
|
value: 50.63214035964035 |
|
- type: recall |
|
value: 58.699999999999996 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (zsm-eng) |
|
config: zsm-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 92.10000000000001 |
|
- type: f1 |
|
value: 89.99666666666667 |
|
- type: precision |
|
value: 89.03333333333333 |
|
- type: recall |
|
value: 92.10000000000001 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ita-eng) |
|
config: ita-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 90.10000000000001 |
|
- type: f1 |
|
value: 87.55666666666667 |
|
- type: precision |
|
value: 86.36166666666668 |
|
- type: recall |
|
value: 90.10000000000001 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cmn-eng) |
|
config: cmn-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 91.4 |
|
- type: f1 |
|
value: 88.89000000000001 |
|
- type: precision |
|
value: 87.71166666666666 |
|
- type: recall |
|
value: 91.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (lvs-eng) |
|
config: lvs-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 65.7 |
|
- type: f1 |
|
value: 60.67427750410509 |
|
- type: precision |
|
value: 58.71785714285714 |
|
- type: recall |
|
value: 65.7 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (glg-eng) |
|
config: glg-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 85.39999999999999 |
|
- type: f1 |
|
value: 81.93190476190475 |
|
- type: precision |
|
value: 80.37833333333333 |
|
- type: recall |
|
value: 85.39999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ceb-eng) |
|
config: ceb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 47.833333333333336 |
|
- type: f1 |
|
value: 42.006625781625786 |
|
- type: precision |
|
value: 40.077380952380956 |
|
- type: recall |
|
value: 47.833333333333336 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (bre-eng) |
|
config: bre-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 10.4 |
|
- type: f1 |
|
value: 8.24465007215007 |
|
- type: precision |
|
value: 7.664597069597071 |
|
- type: recall |
|
value: 10.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ben-eng) |
|
config: ben-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 82.6 |
|
- type: f1 |
|
value: 77.76333333333334 |
|
- type: precision |
|
value: 75.57833333333332 |
|
- type: recall |
|
value: 82.6 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (swg-eng) |
|
config: swg-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 52.67857142857143 |
|
- type: f1 |
|
value: 44.302721088435376 |
|
- type: precision |
|
value: 41.49801587301587 |
|
- type: recall |
|
value: 52.67857142857143 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (arq-eng) |
|
config: arq-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 28.3205268935236 |
|
- type: f1 |
|
value: 22.426666605171157 |
|
- type: precision |
|
value: 20.685900116470915 |
|
- type: recall |
|
value: 28.3205268935236 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kab-eng) |
|
config: kab-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 22.7 |
|
- type: f1 |
|
value: 17.833970473970474 |
|
- type: precision |
|
value: 16.407335164835164 |
|
- type: recall |
|
value: 22.7 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (fra-eng) |
|
config: fra-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 92.2 |
|
- type: f1 |
|
value: 89.92999999999999 |
|
- type: precision |
|
value: 88.87 |
|
- type: recall |
|
value: 92.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (por-eng) |
|
config: por-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 91.4 |
|
- type: f1 |
|
value: 89.25 |
|
- type: precision |
|
value: 88.21666666666667 |
|
- type: recall |
|
value: 91.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tat-eng) |
|
config: tat-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 69.19999999999999 |
|
- type: f1 |
|
value: 63.38269841269841 |
|
- type: precision |
|
value: 61.14773809523809 |
|
- type: recall |
|
value: 69.19999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (oci-eng) |
|
config: oci-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 48.8 |
|
- type: f1 |
|
value: 42.839915639915645 |
|
- type: precision |
|
value: 40.770287114845935 |
|
- type: recall |
|
value: 48.8 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (pol-eng) |
|
config: pol-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 88.8 |
|
- type: f1 |
|
value: 85.90666666666668 |
|
- type: precision |
|
value: 84.54166666666666 |
|
- type: recall |
|
value: 88.8 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (war-eng) |
|
config: war-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 46.6 |
|
- type: f1 |
|
value: 40.85892920804686 |
|
- type: precision |
|
value: 38.838223114604695 |
|
- type: recall |
|
value: 46.6 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (aze-eng) |
|
config: aze-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 84.0 |
|
- type: f1 |
|
value: 80.14190476190475 |
|
- type: precision |
|
value: 78.45333333333333 |
|
- type: recall |
|
value: 84.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (vie-eng) |
|
config: vie-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 90.5 |
|
- type: f1 |
|
value: 87.78333333333333 |
|
- type: precision |
|
value: 86.5 |
|
- type: recall |
|
value: 90.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (nno-eng) |
|
config: nno-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 74.5 |
|
- type: f1 |
|
value: 69.48397546897547 |
|
- type: precision |
|
value: 67.51869047619049 |
|
- type: recall |
|
value: 74.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cha-eng) |
|
config: cha-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 32.846715328467155 |
|
- type: f1 |
|
value: 27.828177499710343 |
|
- type: precision |
|
value: 26.63451511991658 |
|
- type: recall |
|
value: 32.846715328467155 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (mhr-eng) |
|
config: mhr-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 8.0 |
|
- type: f1 |
|
value: 6.07664116764988 |
|
- type: precision |
|
value: 5.544177607179943 |
|
- type: recall |
|
value: 8.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (dan-eng) |
|
config: dan-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 87.6 |
|
- type: f1 |
|
value: 84.38555555555554 |
|
- type: precision |
|
value: 82.91583333333334 |
|
- type: recall |
|
value: 87.6 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ell-eng) |
|
config: ell-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 87.5 |
|
- type: f1 |
|
value: 84.08333333333331 |
|
- type: precision |
|
value: 82.47333333333333 |
|
- type: recall |
|
value: 87.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (amh-eng) |
|
config: amh-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 80.95238095238095 |
|
- type: f1 |
|
value: 76.13095238095238 |
|
- type: precision |
|
value: 74.05753968253967 |
|
- type: recall |
|
value: 80.95238095238095 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (pam-eng) |
|
config: pam-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 8.799999999999999 |
|
- type: f1 |
|
value: 6.971422975172975 |
|
- type: precision |
|
value: 6.557814916172301 |
|
- type: recall |
|
value: 8.799999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (hsb-eng) |
|
config: hsb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 44.099378881987576 |
|
- type: f1 |
|
value: 37.01649742022413 |
|
- type: precision |
|
value: 34.69420618488942 |
|
- type: recall |
|
value: 44.099378881987576 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (srp-eng) |
|
config: srp-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 84.3 |
|
- type: f1 |
|
value: 80.32666666666667 |
|
- type: precision |
|
value: 78.60666666666665 |
|
- type: recall |
|
value: 84.3 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (epo-eng) |
|
config: epo-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 92.5 |
|
- type: f1 |
|
value: 90.49666666666666 |
|
- type: precision |
|
value: 89.56666666666668 |
|
- type: recall |
|
value: 92.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kzj-eng) |
|
config: kzj-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 10.0 |
|
- type: f1 |
|
value: 8.268423529875141 |
|
- type: precision |
|
value: 7.878118605532398 |
|
- type: recall |
|
value: 10.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (awa-eng) |
|
config: awa-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 79.22077922077922 |
|
- type: f1 |
|
value: 74.27128427128426 |
|
- type: precision |
|
value: 72.28715728715729 |
|
- type: recall |
|
value: 79.22077922077922 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (fao-eng) |
|
config: fao-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 65.64885496183206 |
|
- type: f1 |
|
value: 58.87495456197747 |
|
- type: precision |
|
value: 55.992366412213734 |
|
- type: recall |
|
value: 65.64885496183206 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (mal-eng) |
|
config: mal-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 96.06986899563319 |
|
- type: f1 |
|
value: 94.78408539543909 |
|
- type: precision |
|
value: 94.15332362930616 |
|
- type: recall |
|
value: 96.06986899563319 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ile-eng) |
|
config: ile-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 77.2 |
|
- type: f1 |
|
value: 71.72571428571428 |
|
- type: precision |
|
value: 69.41000000000001 |
|
- type: recall |
|
value: 77.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (bos-eng) |
|
config: bos-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 86.4406779661017 |
|
- type: f1 |
|
value: 83.2391713747646 |
|
- type: precision |
|
value: 81.74199623352166 |
|
- type: recall |
|
value: 86.4406779661017 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cor-eng) |
|
config: cor-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 8.4 |
|
- type: f1 |
|
value: 6.017828743398003 |
|
- type: precision |
|
value: 5.4829865484756795 |
|
- type: recall |
|
value: 8.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cat-eng) |
|
config: cat-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 83.5 |
|
- type: f1 |
|
value: 79.74833333333333 |
|
- type: precision |
|
value: 78.04837662337664 |
|
- type: recall |
|
value: 83.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (eus-eng) |
|
config: eus-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 60.4 |
|
- type: f1 |
|
value: 54.467301587301584 |
|
- type: precision |
|
value: 52.23242424242424 |
|
- type: recall |
|
value: 60.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (yue-eng) |
|
config: yue-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 74.9 |
|
- type: f1 |
|
value: 69.68699134199134 |
|
- type: precision |
|
value: 67.59873015873016 |
|
- type: recall |
|
value: 74.9 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (swe-eng) |
|
config: swe-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 88.0 |
|
- type: f1 |
|
value: 84.9652380952381 |
|
- type: precision |
|
value: 83.66166666666666 |
|
- type: recall |
|
value: 88.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (dtp-eng) |
|
config: dtp-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 9.1 |
|
- type: f1 |
|
value: 7.681244588744588 |
|
- type: precision |
|
value: 7.370043290043291 |
|
- type: recall |
|
value: 9.1 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kat-eng) |
|
config: kat-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 80.9651474530831 |
|
- type: f1 |
|
value: 76.84220605132133 |
|
- type: precision |
|
value: 75.19606398962966 |
|
- type: recall |
|
value: 80.9651474530831 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (jpn-eng) |
|
config: jpn-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 86.9 |
|
- type: f1 |
|
value: 83.705 |
|
- type: precision |
|
value: 82.3120634920635 |
|
- type: recall |
|
value: 86.9 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (csb-eng) |
|
config: csb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 29.64426877470356 |
|
- type: f1 |
|
value: 23.98763072676116 |
|
- type: precision |
|
value: 22.506399397703746 |
|
- type: recall |
|
value: 29.64426877470356 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (xho-eng) |
|
config: xho-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 70.4225352112676 |
|
- type: f1 |
|
value: 62.84037558685445 |
|
- type: precision |
|
value: 59.56572769953053 |
|
- type: recall |
|
value: 70.4225352112676 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (orv-eng) |
|
config: orv-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 19.64071856287425 |
|
- type: f1 |
|
value: 15.125271011207756 |
|
- type: precision |
|
value: 13.865019261197494 |
|
- type: recall |
|
value: 19.64071856287425 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ind-eng) |
|
config: ind-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 90.2 |
|
- type: f1 |
|
value: 87.80666666666666 |
|
- type: precision |
|
value: 86.70833333333331 |
|
- type: recall |
|
value: 90.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tuk-eng) |
|
config: tuk-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 23.15270935960591 |
|
- type: f1 |
|
value: 18.407224958949097 |
|
- type: precision |
|
value: 16.982385430661292 |
|
- type: recall |
|
value: 23.15270935960591 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (max-eng) |
|
config: max-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 55.98591549295775 |
|
- type: f1 |
|
value: 49.94718309859154 |
|
- type: precision |
|
value: 47.77864154624717 |
|
- type: recall |
|
value: 55.98591549295775 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (swh-eng) |
|
config: swh-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 73.07692307692307 |
|
- type: f1 |
|
value: 66.74358974358974 |
|
- type: precision |
|
value: 64.06837606837607 |
|
- type: recall |
|
value: 73.07692307692307 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (hin-eng) |
|
config: hin-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 94.89999999999999 |
|
- type: f1 |
|
value: 93.25 |
|
- type: precision |
|
value: 92.43333333333332 |
|
- type: recall |
|
value: 94.89999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (dsb-eng) |
|
config: dsb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 37.78705636743215 |
|
- type: f1 |
|
value: 31.63899658680452 |
|
- type: precision |
|
value: 29.72264397629742 |
|
- type: recall |
|
value: 37.78705636743215 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ber-eng) |
|
config: ber-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 21.6 |
|
- type: f1 |
|
value: 16.91697302697303 |
|
- type: precision |
|
value: 15.71225147075147 |
|
- type: recall |
|
value: 21.6 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tam-eng) |
|
config: tam-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 85.01628664495115 |
|
- type: f1 |
|
value: 81.38514037536838 |
|
- type: precision |
|
value: 79.83170466883823 |
|
- type: recall |
|
value: 85.01628664495115 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (slk-eng) |
|
config: slk-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 83.39999999999999 |
|
- type: f1 |
|
value: 79.96380952380952 |
|
- type: precision |
|
value: 78.48333333333333 |
|
- type: recall |
|
value: 83.39999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tgl-eng) |
|
config: tgl-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 83.2 |
|
- type: f1 |
|
value: 79.26190476190476 |
|
- type: precision |
|
value: 77.58833333333334 |
|
- type: recall |
|
value: 83.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ast-eng) |
|
config: ast-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 75.59055118110236 |
|
- type: f1 |
|
value: 71.66854143232096 |
|
- type: precision |
|
value: 70.30183727034121 |
|
- type: recall |
|
value: 75.59055118110236 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (mkd-eng) |
|
config: mkd-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 65.5 |
|
- type: f1 |
|
value: 59.26095238095238 |
|
- type: precision |
|
value: 56.81909090909092 |
|
- type: recall |
|
value: 65.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (khm-eng) |
|
config: khm-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 55.26315789473685 |
|
- type: f1 |
|
value: 47.986523325858506 |
|
- type: precision |
|
value: 45.33950006595436 |
|
- type: recall |
|
value: 55.26315789473685 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ces-eng) |
|
config: ces-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 82.89999999999999 |
|
- type: f1 |
|
value: 78.835 |
|
- type: precision |
|
value: 77.04761904761905 |
|
- type: recall |
|
value: 82.89999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tzl-eng) |
|
config: tzl-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 43.269230769230774 |
|
- type: f1 |
|
value: 36.20421245421245 |
|
- type: precision |
|
value: 33.57371794871795 |
|
- type: recall |
|
value: 43.269230769230774 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (urd-eng) |
|
config: urd-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 88.0 |
|
- type: f1 |
|
value: 84.70666666666666 |
|
- type: precision |
|
value: 83.23166666666665 |
|
- type: recall |
|
value: 88.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ara-eng) |
|
config: ara-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 77.4 |
|
- type: f1 |
|
value: 72.54666666666667 |
|
- type: precision |
|
value: 70.54318181818181 |
|
- type: recall |
|
value: 77.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kor-eng) |
|
config: kor-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 78.60000000000001 |
|
- type: f1 |
|
value: 74.1588888888889 |
|
- type: precision |
|
value: 72.30250000000001 |
|
- type: recall |
|
value: 78.60000000000001 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (yid-eng) |
|
config: yid-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 72.40566037735849 |
|
- type: f1 |
|
value: 66.82587328813744 |
|
- type: precision |
|
value: 64.75039308176099 |
|
- type: recall |
|
value: 72.40566037735849 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (fin-eng) |
|
config: fin-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 73.8 |
|
- type: f1 |
|
value: 68.56357142857144 |
|
- type: precision |
|
value: 66.3178822055138 |
|
- type: recall |
|
value: 73.8 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tha-eng) |
|
config: tha-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 91.78832116788321 |
|
- type: f1 |
|
value: 89.3552311435523 |
|
- type: precision |
|
value: 88.20559610705597 |
|
- type: recall |
|
value: 91.78832116788321 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (wuu-eng) |
|
config: wuu-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 74.3 |
|
- type: f1 |
|
value: 69.05085581085581 |
|
- type: precision |
|
value: 66.955 |
|
- type: recall |
|
value: 74.3 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.896 |
|
- type: map_at_10 |
|
value: 8.993 |
|
- type: map_at_100 |
|
value: 14.133999999999999 |
|
- type: map_at_1000 |
|
value: 15.668000000000001 |
|
- type: map_at_3 |
|
value: 5.862 |
|
- type: map_at_5 |
|
value: 7.17 |
|
- type: mrr_at_1 |
|
value: 34.694 |
|
- type: mrr_at_10 |
|
value: 42.931000000000004 |
|
- type: mrr_at_100 |
|
value: 44.81 |
|
- type: mrr_at_1000 |
|
value: 44.81 |
|
- type: mrr_at_3 |
|
value: 38.435 |
|
- type: mrr_at_5 |
|
value: 41.701 |
|
- type: ndcg_at_1 |
|
value: 31.633 |
|
- type: ndcg_at_10 |
|
value: 21.163 |
|
- type: ndcg_at_100 |
|
value: 33.306000000000004 |
|
- type: ndcg_at_1000 |
|
value: 45.275999999999996 |
|
- type: ndcg_at_3 |
|
value: 25.685999999999996 |
|
- type: ndcg_at_5 |
|
value: 23.732 |
|
- type: precision_at_1 |
|
value: 34.694 |
|
- type: precision_at_10 |
|
value: 17.755000000000003 |
|
- type: precision_at_100 |
|
value: 6.938999999999999 |
|
- type: precision_at_1000 |
|
value: 1.48 |
|
- type: precision_at_3 |
|
value: 25.85 |
|
- type: precision_at_5 |
|
value: 23.265 |
|
- type: recall_at_1 |
|
value: 2.896 |
|
- type: recall_at_10 |
|
value: 13.333999999999998 |
|
- type: recall_at_100 |
|
value: 43.517 |
|
- type: recall_at_1000 |
|
value: 79.836 |
|
- type: recall_at_3 |
|
value: 6.306000000000001 |
|
- type: recall_at_5 |
|
value: 8.825 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 69.3874 |
|
- type: ap |
|
value: 13.829909072469423 |
|
- type: f1 |
|
value: 53.54534203543492 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 62.62026032823995 |
|
- type: f1 |
|
value: 62.85251350485221 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 33.21527881409797 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 84.97943613280086 |
|
- type: cos_sim_ap |
|
value: 70.75454316885921 |
|
- type: cos_sim_f1 |
|
value: 65.38274012676743 |
|
- type: cos_sim_precision |
|
value: 60.761214318078835 |
|
- type: cos_sim_recall |
|
value: 70.76517150395777 |
|
- type: dot_accuracy |
|
value: 79.0546581629612 |
|
- type: dot_ap |
|
value: 47.3197121792147 |
|
- type: dot_f1 |
|
value: 49.20106524633821 |
|
- type: dot_precision |
|
value: 42.45499808502489 |
|
- type: dot_recall |
|
value: 58.49604221635884 |
|
- type: euclidean_accuracy |
|
value: 85.08076533349228 |
|
- type: euclidean_ap |
|
value: 70.95016106374474 |
|
- type: euclidean_f1 |
|
value: 65.43987900176455 |
|
- type: euclidean_precision |
|
value: 62.64478764478765 |
|
- type: euclidean_recall |
|
value: 68.49604221635884 |
|
- type: manhattan_accuracy |
|
value: 84.93771234428085 |
|
- type: manhattan_ap |
|
value: 70.63668388755362 |
|
- type: manhattan_f1 |
|
value: 65.23895401262398 |
|
- type: manhattan_precision |
|
value: 56.946084218811485 |
|
- type: manhattan_recall |
|
value: 76.35883905013192 |
|
- type: max_accuracy |
|
value: 85.08076533349228 |
|
- type: max_ap |
|
value: 70.95016106374474 |
|
- type: max_f1 |
|
value: 65.43987900176455 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.69096130709822 |
|
- type: cos_sim_ap |
|
value: 84.82526278228542 |
|
- type: cos_sim_f1 |
|
value: 77.65485060585536 |
|
- type: cos_sim_precision |
|
value: 75.94582658619167 |
|
- type: cos_sim_recall |
|
value: 79.44256236526024 |
|
- type: dot_accuracy |
|
value: 80.97954748321496 |
|
- type: dot_ap |
|
value: 64.81642914145866 |
|
- type: dot_f1 |
|
value: 60.631996987229975 |
|
- type: dot_precision |
|
value: 54.5897293631712 |
|
- type: dot_recall |
|
value: 68.17831844779796 |
|
- type: euclidean_accuracy |
|
value: 88.6987231730508 |
|
- type: euclidean_ap |
|
value: 84.80003825477253 |
|
- type: euclidean_f1 |
|
value: 77.67194179854496 |
|
- type: euclidean_precision |
|
value: 75.7128235122094 |
|
- type: euclidean_recall |
|
value: 79.73514012935017 |
|
- type: manhattan_accuracy |
|
value: 88.62692591298949 |
|
- type: manhattan_ap |
|
value: 84.80451408255276 |
|
- type: manhattan_f1 |
|
value: 77.69888949572183 |
|
- type: manhattan_precision |
|
value: 73.70311528631622 |
|
- type: manhattan_recall |
|
value: 82.15275639051433 |
|
- type: max_accuracy |
|
value: 88.6987231730508 |
|
- type: max_ap |
|
value: 84.82526278228542 |
|
- type: max_f1 |
|
value: 77.69888949572183 |
|
language: |
|
- multilingual |
|
- af |
|
- am |
|
- ar |
|
- as |
|
- az |
|
- be |
|
- bg |
|
- bn |
|
- br |
|
- bs |
|
- ca |
|
- cs |
|
- cy |
|
- da |
|
- de |
|
- el |
|
- en |
|
- eo |
|
- es |
|
- et |
|
- eu |
|
- fa |
|
- fi |
|
- fr |
|
- fy |
|
- ga |
|
- gd |
|
- gl |
|
- gu |
|
- ha |
|
- he |
|
- hi |
|
- hr |
|
- hu |
|
- hy |
|
- id |
|
- is |
|
- it |
|
- ja |
|
- jv |
|
- ka |
|
- kk |
|
- km |
|
- kn |
|
- ko |
|
- ku |
|
- ky |
|
- la |
|
- lo |
|
- lt |
|
- lv |
|
- mg |
|
- mk |
|
- ml |
|
- mn |
|
- mr |
|
- ms |
|
- my |
|
- ne |
|
- nl |
|
- 'no' |
|
- om |
|
- or |
|
- pa |
|
- pl |
|
- ps |
|
- pt |
|
- ro |
|
- ru |
|
- sa |
|
- sd |
|
- si |
|
- sk |
|
- sl |
|
- so |
|
- sq |
|
- sr |
|
- su |
|
- sv |
|
- sw |
|
- ta |
|
- te |
|
- th |
|
- tl |
|
- tr |
|
- ug |
|
- uk |
|
- ur |
|
- uz |
|
- vi |
|
- xh |
|
- yi |
|
- zh |
|
license: mit |
|
--- |
|
|
|
## Multilingual-E5-small |
|
|
|
[Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). |
|
Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 |
|
|
|
This model has 12 layers and the embedding size is 384. |
|
|
|
## Usage |
|
|
|
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. |
|
|
|
```python |
|
import torch.nn.functional as F |
|
|
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
def average_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) |
|
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
|
|
|
|
# Each input text should start with "query: " or "passage: ", even for non-English texts. |
|
# For tasks other than retrieval, you can simply use the "query: " prefix. |
|
input_texts = ['query: how much protein should a female eat', |
|
'query: 南瓜的家常做法', |
|
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", |
|
"passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-small') |
|
model = AutoModel.from_pretrained('intfloat/multilingual-e5-small') |
|
|
|
# Tokenize the input texts |
|
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') |
|
|
|
outputs = model(**batch_dict) |
|
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:2] @ embeddings[2:].T) * 100 |
|
print(scores.tolist()) |
|
``` |
|
|
|
## Supported Languages |
|
|
|
This model is initialized from [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) |
|
and continually trained on a mixture of multilingual datasets. |
|
It supports 100 languages from xlm-roberta, |
|
but low-resource languages may see performance degradation. |
|
|
|
## Training Details |
|
|
|
**Initialization**: [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) |
|
|
|
**First stage**: contrastive pre-training with weak supervision |
|
|
|
| Dataset | Weak supervision | # of text pairs | |
|
|--------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------| |
|
| Filtered [mC4](https://huggingface.co/datasets/mc4) | (title, page content) | 1B | |
|
| [CC News](https://huggingface.co/datasets/intfloat/multilingual_cc_news) | (title, news content) | 400M | |
|
| [NLLB](https://huggingface.co/datasets/allenai/nllb) | translation pairs | 2.4B | |
|
| [Wikipedia](https://huggingface.co/datasets/intfloat/wikipedia) | (hierarchical section title, passage) | 150M | |
|
| Filtered [Reddit](https://www.reddit.com/) | (comment, response) | 800M | |
|
| [S2ORC](https://github.com/allenai/s2orc) | (title, abstract) and citation pairs | 100M | |
|
| [Stackexchange](https://stackexchange.com/) | (question, answer) | 50M | |
|
| [xP3](https://huggingface.co/datasets/bigscience/xP3) | (input prompt, response) | 80M | |
|
| [Miscellaneous unsupervised SBERT data](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | - | 10M | |
|
|
|
**Second stage**: supervised fine-tuning |
|
|
|
| Dataset | Language | # of text pairs | |
|
|----------------------------------------------------------------------------------------|--------------|-----------------| |
|
| [MS MARCO](https://microsoft.github.io/msmarco/) | English | 500k | |
|
| [NQ](https://github.com/facebookresearch/DPR) | English | 70k | |
|
| [Trivia QA](https://github.com/facebookresearch/DPR) | English | 60k | |
|
| [NLI from SimCSE](https://github.com/princeton-nlp/SimCSE) | English | <300k | |
|
| [ELI5](https://huggingface.co/datasets/eli5) | English | 500k | |
|
| [DuReader Retrieval](https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval) | Chinese | 86k | |
|
| [KILT Fever](https://huggingface.co/datasets/kilt_tasks) | English | 70k | |
|
| [KILT HotpotQA](https://huggingface.co/datasets/kilt_tasks) | English | 70k | |
|
| [SQuAD](https://huggingface.co/datasets/squad) | English | 87k | |
|
| [Quora](https://huggingface.co/datasets/quora) | English | 150k | |
|
| [Mr. TyDi](https://huggingface.co/datasets/castorini/mr-tydi) | 11 languages | 50k | |
|
| [MIRACL](https://huggingface.co/datasets/miracl/miracl) | 16 languages | 40k | |
|
|
|
For all labeled datasets, we only use its training set for fine-tuning. |
|
|
|
For other training details, please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). |
|
|
|
## Benchmark Results on [Mr. TyDi](https://arxiv.org/abs/2108.08787) |
|
|
|
| Model | Avg MRR@10 | | ar | bn | en | fi | id | ja | ko | ru | sw | te | th | |
|
|-----------------------|------------|-------|------| --- | --- | --- | --- | --- | --- | --- |------| --- | --- | |
|
| BM25 | 33.3 | | 36.7 | 41.3 | 15.1 | 28.8 | 38.2 | 21.7 | 28.1 | 32.9 | 39.6 | 42.4 | 41.7 | |
|
| mDPR | 16.7 | | 26.0 | 25.8 | 16.2 | 11.3 | 14.6 | 18.1 | 21.9 | 18.5 | 7.3 | 10.6 | 13.5 | |
|
| BM25 + mDPR | 41.7 | | 49.1 | 53.5 | 28.4 | 36.5 | 45.5 | 35.5 | 36.2 | 42.7 | 40.5 | 42.0 | 49.2 | |
|
| | | |
|
| multilingual-e5-small | 64.4 | | 71.5 | 66.3 | 54.5 | 57.7 | 63.2 | 55.4 | 54.3 | 60.8 | 65.4 | 89.1 | 70.1 | |
|
| multilingual-e5-base | 65.9 | | 72.3 | 65.0 | 58.5 | 60.8 | 64.9 | 56.6 | 55.8 | 62.7 | 69.0 | 86.6 | 72.7 | |
|
| multilingual-e5-large | **70.5** | | 77.5 | 73.2 | 60.8 | 66.8 | 68.5 | 62.5 | 61.6 | 65.8 | 72.7 | 90.2 | 76.2 | |
|
|
|
## MTEB Benchmark Evaluation |
|
|
|
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results |
|
on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). |
|
|
|
## Support for Sentence Transformers |
|
|
|
Below is an example for usage with sentence_transformers. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
model = SentenceTransformer('intfloat/multilingual-e5-small') |
|
input_texts = [ |
|
'query: how much protein should a female eat', |
|
'query: 南瓜的家常做法', |
|
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 i s 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or traini ng for a marathon. Check out the chart below to see how much protein you should be eating each day.", |
|
"passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮 ,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右, 放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油 锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅" |
|
] |
|
embeddings = model.encode(input_texts, normalize_embeddings=True) |
|
``` |
|
|
|
Package requirements |
|
|
|
`pip install sentence_transformers~=2.2.2` |
|
|
|
Contributors: [michaelfeil](https://huggingface.co/michaelfeil) |
|
|
|
## FAQ |
|
|
|
**1. Do I need to add the prefix "query: " and "passage: " to input texts?** |
|
|
|
Yes, this is how the model is trained, otherwise you will see a performance degradation. |
|
|
|
Here are some rules of thumb: |
|
- Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. |
|
|
|
- Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval. |
|
|
|
- Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. |
|
|
|
**2. Why are my reproduced results slightly different from reported in the model card?** |
|
|
|
Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. |
|
|
|
**3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** |
|
|
|
This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. |
|
|
|
For text embedding tasks like text retrieval or semantic similarity, |
|
what matters is the relative order of the scores instead of the absolute values, |
|
so this should not be an issue. |
|
|
|
## Citation |
|
|
|
If you find our paper or models helpful, please consider cite as follows: |
|
|
|
``` |
|
@article{wang2022text, |
|
title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, |
|
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, |
|
journal={arXiv preprint arXiv:2212.03533}, |
|
year={2022} |
|
} |
|
``` |
|
|
|
## Limitations |
|
|
|
Long texts will be truncated to at most 512 tokens. |