|
--- |
|
license: mit |
|
base_model: facebook/mbart-large-50 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- sacrebleu |
|
model-index: |
|
- name: mBART-TextSimp-LT-BatchSize4-lr5e-5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mBART-TextSimp-LT-BatchSize4-lr5e-5 |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0720 |
|
- Rouge1: 0.7898 |
|
- Rouge2: 0.643 |
|
- Rougel: 0.783 |
|
- Sacrebleu: 57.6148 |
|
- Gen Len: 33.6014 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.407 | 1.0 | 209 | 0.1938 | 0.6481 | 0.4813 | 0.6379 | 42.027 | 33.6014 | |
|
| 0.8377 | 2.0 | 418 | 0.1076 | 0.6446 | 0.4765 | 0.632 | 40.6092 | 33.7852 | |
|
| 0.0589 | 3.0 | 627 | 0.0561 | 0.7659 | 0.6056 | 0.7581 | 51.836 | 33.6014 | |
|
| 0.0237 | 4.0 | 836 | 0.0551 | 0.7816 | 0.6292 | 0.774 | 54.6775 | 33.6014 | |
|
| 0.009 | 5.0 | 1045 | 0.0598 | 0.78 | 0.628 | 0.7723 | 54.4212 | 33.6014 | |
|
| 0.0059 | 6.0 | 1254 | 0.0648 | 0.7876 | 0.6424 | 0.7805 | 56.5662 | 33.6014 | |
|
| 0.003 | 7.0 | 1463 | 0.0694 | 0.7883 | 0.6405 | 0.781 | 57.3259 | 33.6014 | |
|
| 0.0013 | 8.0 | 1672 | 0.0720 | 0.7898 | 0.643 | 0.783 | 57.6148 | 33.6014 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|