File size: 4,990 Bytes
0163a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

import torch

try:
    import mmcv as mmcv
    from mmcv.parallel import collate, scatter
    from mmcv.runner import load_checkpoint
    from mmseg.datasets.pipelines import Compose
    from mmseg.models import build_segmentor
except ImportError:
    import annotator.mmpkg.mmcv as mmcv
    from annotator.mmpkg.mmcv.parallel import collate, scatter
    from annotator.mmpkg.mmcv.runner import load_checkpoint
    from annotator.mmpkg.mmseg.datasets.pipelines import Compose
    from annotator.mmpkg.mmseg.models import build_segmentor
    
def init_segmentor(config, checkpoint=None, device='cuda:0'):
    """Initialize a segmentor from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.
        device (str, optional) CPU/CUDA device option. Default 'cuda:0'.
            Use 'cpu' for loading model on CPU.
    Returns:
        nn.Module: The constructed segmentor.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    config.model.train_cfg = None
    model = build_segmentor(config.model, test_cfg=config.get('test_cfg'))
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
        model.CLASSES = checkpoint['meta']['CLASSES']
        model.PALETTE = checkpoint['meta']['PALETTE']
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model


class LoadImage:
    """A simple pipeline to load image."""

    def __call__(self, results):
        """Call function to load images into results.

        Args:
            results (dict): A result dict contains the file name
                of the image to be read.

        Returns:
            dict: ``results`` will be returned containing loaded image.
        """

        if isinstance(results['img'], str):
            results['filename'] = results['img']
            results['ori_filename'] = results['img']
        else:
            results['filename'] = None
            results['ori_filename'] = None
        img = mmcv.imread(results['img'])
        results['img'] = img
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        return results


def inference_segmentor(model, img):
    """Inference image(s) with the segmentor.

    Args:
        model (nn.Module): The loaded segmentor.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        (list[Tensor]): The segmentation result.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device])[0]
    else:
        data['img_metas'] = [i.data[0] for i in data['img_metas']]

    data['img'] = [x.to(device) for x in data['img']]

    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result


def show_result_pyplot(model,
                       img,
                       result,
                       palette=None,
                       fig_size=(15, 10),
                       opacity=0.5,
                       title='',
                       block=True):
    """Visualize the segmentation results on the image.

    Args:
        model (nn.Module): The loaded segmentor.
        img (str or np.ndarray): Image filename or loaded image.
        result (list): The segmentation result.
        palette (list[list[int]]] | None): The palette of segmentation
            map. If None is given, random palette will be generated.
            Default: None
        fig_size (tuple): Figure size of the pyplot figure.
        opacity(float): Opacity of painted segmentation map.
            Default 0.5.
            Must be in (0, 1] range.
        title (str): The title of pyplot figure.
            Default is ''.
        block (bool): Whether to block the pyplot figure.
            Default is True.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(
        img, result, palette=palette, show=False, opacity=opacity)
    # plt.figure(figsize=fig_size)
    # plt.imshow(mmcv.bgr2rgb(img))
    # plt.title(title)
    # plt.tight_layout()
    # plt.show(block=block)
    return mmcv.bgr2rgb(img)