File size: 1,645 Bytes
0163a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import os
import sys
import cv2
from base64 import b64encode
from pathlib import Path
import requests
BASE_URL = "http://localhost:7860"
# setup_test_env
os.environ['IGNORE_CMD_ARGS_ERRORS'] = 'True'
file_path = Path(__file__).resolve()
ext_root = file_path.parent.parent
a1111_root = ext_root.parent.parent
for p in (ext_root, a1111_root):
if p not in sys.path:
sys.path.append(str(p))
# Initialize A1111
from modules import initialize
initialize.imports()
initialize.initialize()
from scripts.enums import StableDiffusionVersion
def readImage(path):
img = cv2.imread(path)
retval, buffer = cv2.imencode('.jpg', img)
b64img = b64encode(buffer).decode("utf-8")
return b64img
def get_model(model_name: str, sd_version: StableDiffusionVersion = StableDiffusionVersion.SD1x) -> str:
""" Find an available model with specified model name and sd_version. """
if model_name.lower() == "none":
return "None"
r = requests.get(BASE_URL+"/controlnet/model_list")
result = r.json()
if "model_list" not in result:
raise ValueError("No model available")
candidates = [
model
for model in result["model_list"]
if (
model_name.lower() in model.lower() and
StableDiffusionVersion.detect_from_model_name(model) == sd_version
)
]
if not candidates:
raise ValueError("No suitable model available")
return candidates[0]
def get_modules():
return requests.get(f"{BASE_URL}/controlnet/module_list").json()
def detect(json):
return requests.post(BASE_URL+"/controlnet/detect", json=json)
|