File size: 8,352 Bytes
0163a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import io
import os
import cv2
import base64
from typing import Dict, Any, List, Union, Literal
from pathlib import Path
import datetime
from enum import Enum
import numpy as np
import requests
from PIL import Image
PayloadOverrideType = Dict[str, Any]
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
test_result_dir = Path(__file__).parent / "results" / f"test_result_{timestamp}"
test_expectation_dir = Path(__file__).parent / "expectations"
os.makedirs(test_expectation_dir, exist_ok=True)
resource_dir = Path(__file__).parents[2] / "images"
def read_image(img_path: Path) -> str:
img = cv2.imread(str(img_path))
_, bytes = cv2.imencode(".png", img)
encoded_image = base64.b64encode(bytes).decode("utf-8")
return encoded_image
def read_image_dir(img_dir: Path, suffixes=('.png', '.jpg', '.jpeg', '.webp')) -> List[str]:
"""Try read all images in given img_dir."""
img_dir = str(img_dir)
images = []
for filename in os.listdir(img_dir):
if filename.endswith(suffixes):
img_path = os.path.join(img_dir, filename)
try:
images.append(read_image(img_path))
except IOError:
print(f"Error opening {img_path}")
return images
girl_img = read_image(resource_dir / "1girl.png")
mask_img = read_image(resource_dir / "mask.png")
mask_small_img = read_image(resource_dir / "mask_small.png")
portrait_imgs = read_image_dir(resource_dir / "portrait")
realistic_girl_face_img = portrait_imgs[0]
living_room_img = read_image(resource_dir / "living_room.webp")
general_negative_prompt = """
(worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality,
((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot,
backlight,(ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21),
(tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, (bad anatomy:1.21),
(bad proportions:1.331), extra limbs, (missing arms:1.331), (extra legs:1.331),
(fused fingers:1.61051), (too many fingers:1.61051), (unclear eyes:1.331), bad hands,
missing fingers, extra digit, bad body, easynegative, nsfw"""
class StableDiffusionVersion(Enum):
"""The version family of stable diffusion model."""
UNKNOWN = 0
SD1x = 1
SD2x = 2
SDXL = 3
sd_version = StableDiffusionVersion(
int(os.environ.get("CONTROLNET_TEST_SD_VERSION", StableDiffusionVersion.SD1x.value))
)
is_full_coverage = os.environ.get("CONTROLNET_TEST_FULL_COVERAGE", None) is not None
class APITestTemplate:
is_set_expectation_run = os.environ.get("CONTROLNET_SET_EXP", "True") == "True"
def __init__(
self,
name: str,
gen_type: Union[Literal["img2img"], Literal["txt2img"]],
payload_overrides: PayloadOverrideType,
unit_overrides: Union[PayloadOverrideType, List[PayloadOverrideType]],
):
self.name = name
self.url = "http://localhost:7860/sdapi/v1/" + gen_type
self.payload = {
**(txt2img_payload if gen_type == "txt2img" else img2img_payload),
**payload_overrides,
}
unit_overrides = (
unit_overrides
if isinstance(unit_overrides, (list, tuple))
else [unit_overrides]
)
self.payload["alwayson_scripts"]["ControlNet"]["args"] = [
{
**default_unit,
**unit_override,
}
for unit_override in unit_overrides
]
def exec(self, result_only: bool = True) -> bool:
if not APITestTemplate.is_set_expectation_run:
os.makedirs(test_result_dir, exist_ok=True)
failed = False
response = requests.post(url=self.url, json=self.payload).json()
if "images" not in response:
print(response)
return False
dest_dir = (
test_expectation_dir
if APITestTemplate.is_set_expectation_run
else test_result_dir
)
results = response["images"][:1] if result_only else response["images"]
for i, base64image in enumerate(results):
img_file_name = f"{self.name}_{i}.png"
Image.open(io.BytesIO(base64.b64decode(base64image.split(",", 1)[0]))).save(
dest_dir / img_file_name
)
if not APITestTemplate.is_set_expectation_run:
try:
img1 = cv2.imread(os.path.join(test_expectation_dir, img_file_name))
img2 = cv2.imread(os.path.join(test_result_dir, img_file_name))
except Exception as e:
print(f"Get exception reading imgs: {e}")
failed = True
continue
if img1 is None:
print(f"Warn: No expectation file found {img_file_name}.")
continue
if not expect_same_image(
img1,
img2,
diff_img_path=str(test_result_dir
/ img_file_name.replace(".png", "_diff.png")),
):
failed = True
return not failed
def expect_same_image(img1, img2, diff_img_path: str) -> bool:
# Calculate the difference between the two images
diff = cv2.absdiff(img1, img2)
# Set a threshold to highlight the different pixels
threshold = 30
diff_highlighted = np.where(diff > threshold, 255, 0).astype(np.uint8)
# Assert that the two images are similar within a tolerance
similar = np.allclose(img1, img2, rtol=0.5, atol=1)
if not similar:
# Save the diff_highlighted image to inspect the differences
cv2.imwrite(diff_img_path, diff_highlighted)
matching_pixels = np.isclose(img1, img2, rtol=0.5, atol=1)
similar_in_general = (matching_pixels.sum() / matching_pixels.size) >= 0.95
return similar_in_general
default_unit = {
"control_mode": 0,
"enabled": True,
"guidance_end": 1,
"guidance_start": 0,
"low_vram": False,
"pixel_perfect": True,
"processor_res": 512,
"resize_mode": 1,
"threshold_a": 64,
"threshold_b": 64,
"weight": 1,
}
img2img_payload = {
"batch_size": 1,
"cfg_scale": 7,
"height": 768,
"width": 512,
"n_iter": 1,
"steps": 10,
"sampler_name": "Euler a",
"prompt": "(masterpiece: 1.3), (highres: 1.3), best quality,",
"negative_prompt": "",
"seed": 42,
"seed_enable_extras": False,
"seed_resize_from_h": 0,
"seed_resize_from_w": 0,
"subseed": -1,
"subseed_strength": 0,
"override_settings": {},
"override_settings_restore_afterwards": False,
"do_not_save_grid": False,
"do_not_save_samples": False,
"s_churn": 0,
"s_min_uncond": 0,
"s_noise": 1,
"s_tmax": None,
"s_tmin": 0,
"script_args": [],
"script_name": None,
"styles": [],
"alwayson_scripts": {"ControlNet": {"args": [default_unit]}},
"denoising_strength": 0.75,
"initial_noise_multiplier": 1,
"inpaint_full_res": 0,
"inpaint_full_res_padding": 32,
"inpainting_fill": 1,
"inpainting_mask_invert": 0,
"mask_blur_x": 4,
"mask_blur_y": 4,
"mask_blur": 4,
"resize_mode": 0,
}
txt2img_payload = {
"alwayson_scripts": {"ControlNet": {"args": [default_unit]}},
"batch_size": 1,
"cfg_scale": 7,
"comments": {},
"disable_extra_networks": False,
"do_not_save_grid": False,
"do_not_save_samples": False,
"enable_hr": False,
"height": 768,
"hr_negative_prompt": "",
"hr_prompt": "",
"hr_resize_x": 0,
"hr_resize_y": 0,
"hr_scale": 2,
"hr_second_pass_steps": 0,
"hr_upscaler": "Latent",
"n_iter": 1,
"negative_prompt": "",
"override_settings": {},
"override_settings_restore_afterwards": True,
"prompt": "(masterpiece: 1.3), (highres: 1.3), best quality,",
"restore_faces": False,
"s_churn": 0.0,
"s_min_uncond": 0,
"s_noise": 1.0,
"s_tmax": None,
"s_tmin": 0.0,
"sampler_name": "Euler a",
"script_args": [],
"script_name": None,
"seed": 42,
"seed_enable_extras": True,
"seed_resize_from_h": -1,
"seed_resize_from_w": -1,
"steps": 10,
"styles": [],
"subseed": -1,
"subseed_strength": 0,
"tiling": False,
"width": 512,
}
|