File size: 6,720 Bytes
0163a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
### https://gist.github.com/kohya-ss/3f774da220df102548093a7abc8538ed
from pathlib import Path
from omegaconf import DictConfig, OmegaConf
from modules import scripts, script_callbacks
import gradio as gr
import torch
CONFIG_PATH = Path(__file__).parent.resolve() / '../config.yaml'
class Scaler(torch.nn.Module):
def __init__(self, scale, block, scaler):
super().__init__()
self.scale = scale
self.block = block
self.scaler = scaler
def forward(self, x, *args):
x = torch.nn.functional.interpolate(x, scale_factor=self.scale, mode=self.scaler)
return self.block(x, *args)
class KohyaHiresFix(scripts.Script):
def __init__(self):
super().__init__()
try:
self.config: DictConfig = OmegaConf.load(CONFIG_PATH)
except Exception:
self.config = DictConfig({})
self.disable = False
self.step_limit = 0
self.infotext_fields = []
def title(self):
return "Kohya Hires.fix"
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
with gr.Accordion(label='Kohya Hires.fix', open=False):
with gr.Row():
enable = gr.Checkbox(label='Enable extension', value=False)
with gr.Row():
s1 = gr.Slider(minimum=0, maximum=0.5, step=0.01, label="Stop at", value=self.config.get('s1', 0.15))
d1 = gr.Slider(minimum=1, maximum=10, step=1, label="Depth", value=self.config.get('d1', 3))
with gr.Row():
s2 = gr.Slider(minimum=0, maximum=0.5, step=0.01, label="Stop at", value=self.config.get('s2', 0.3))
d2 = gr.Slider(minimum=1, maximum=10, step=1, label="Depth", value=self.config.get('d2', 4))
with gr.Row():
scaler = gr.Dropdown(['bicubic', 'bilinear', 'nearest', 'nearest-exact'], label='Layer scaler',
value=self.config.get('scaler', 'bicubic'))
downscale = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, label="Downsampling scale",
value=self.config.get('downscale', 0.5))
upscale = gr.Slider(minimum=1.0, maximum=4.0, step=0.1, label="Upsampling scale",
value=self.config.get('upscale', 2.0))
with gr.Row():
smooth_scaling = gr.Checkbox(label="Smooth scaling", value=self.config.get('smooth_scaling', True))
early_out = gr.Checkbox(label="Early upsampling", value=self.config.get('early_out', False))
only_one_pass = gr.Checkbox(label='Disable for additional passes',
value=self.config.get('only_one_pass', True))
ui = [enable, only_one_pass, d1, d2, s1, s2, scaler, downscale, upscale, smooth_scaling, early_out]
for elem in ui:
setattr(elem, "do_not_save_to_config", True)
parameters = {
'DSHF_s1': s1,
'DSHF_d1': d1,
'DSHF_s2': s2,
'DSHF_d2': d2,
'DSHF_scaler': scaler,
'DSHF_down': downscale,
'DSHF_up': upscale,
'DSHF_smooth': smooth_scaling,
'DSHF_early': early_out,
'DSHF_one': only_one_pass,
}
# using "DSHF_s1" as key to check if extension is enabled
self.infotext_fields.append((enable, lambda d: d.get('DSHF_s1', False)))
for k, element in parameters.items():
self.infotext_fields.append((element, k))
return ui
def process(self, p, enable, only_one_pass, d1, d2, s1, s2, scaler, downscale, upscale, smooth_scaling, early_out):
self.config = DictConfig({name: var for name, var in locals().items() if name not in ['self', 'p']})
if not enable or self.disable:
script_callbacks.remove_current_script_callbacks()
return
model = p.sd_model.model.diffusion_model
if s1 > s2: self.config.s2 = s1
self.p1 = (s1, d1 - 1)
self.p2 = (s2, d2 - 1)
self.step_limit = 0
def denoiser_callback(params: script_callbacks.CFGDenoiserParams):
if params.sampling_step < self.step_limit: return
for s, d in [self.p1, self.p2]:
out_d = d if self.config.early_out else -(d + 1)
if params.sampling_step < params.total_sampling_steps * s:
if not isinstance(model.input_blocks[d], Scaler):
model.input_blocks[d] = Scaler(self.config.downscale, model.input_blocks[d], self.config.scaler)
model.output_blocks[out_d] = Scaler(self.config.upscale, model.output_blocks[out_d], self.config.scaler)
elif self.config.smooth_scaling:
scale_ratio = params.sampling_step / (params.total_sampling_steps * s)
downscale = min((1 - self.config.downscale) * scale_ratio + self.config.downscale, 1.0)
model.input_blocks[d].scale = downscale
model.output_blocks[out_d].scale = self.config.upscale * (self.config.downscale / downscale)
return
elif isinstance(model.input_blocks[d], Scaler) and (self.p1[1] != self.p2[1] or s == self.p2[0]):
model.input_blocks[d] = model.input_blocks[d].block
model.output_blocks[out_d] = model.output_blocks[out_d].block
self.step_limit = params.sampling_step if self.config.only_one_pass else 0
script_callbacks.on_cfg_denoiser(denoiser_callback)
parameters = {
'DSHF_s1': s1,
'DSHF_d1': d1,
'DSHF_s2': s2,
'DSHF_d2': d2,
'DSHF_scaler': scaler,
'DSHF_down': downscale,
'DSHF_up': upscale,
'DSHF_smooth': smooth_scaling,
'DSHF_early': early_out,
'DSHF_one': only_one_pass,
}
for k, v in parameters.items():
p.extra_generation_params[k] = v
def postprocess(self, p, processed, *args):
for i, b in enumerate(p.sd_model.model.diffusion_model.input_blocks):
if isinstance(b, Scaler):
p.sd_model.model.diffusion_model.input_blocks[i] = b.block
for i, b in enumerate(p.sd_model.model.diffusion_model.output_blocks):
if isinstance(b, Scaler):
p.sd_model.model.diffusion_model.output_blocks[i] = b.block
OmegaConf.save(self.config, CONFIG_PATH)
def process_batch(self, p, *args, **kwargs):
self.step_limit = 0
|