File size: 7,951 Bytes
0163a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import tqdm
import torch
import safetensors.torch
from torch import Tensor
from modules import shared
from modules import sd_models, sd_vae

# position_ids in clip is int64. model_ema.num_updates is int32
dtypes_to_fp16 = {torch.float32, torch.float64, torch.bfloat16}
dtypes_to_bf16 = {torch.float32, torch.float64, torch.float16}


class MockModelInfo:
    def __init__(self, model_path: str) -> None:
        self.filepath = model_path
        self.filename: str = os.path.basename(model_path)
        self.model_name: str = self.filename.split(".")[0]


def conv_fp16(t: Tensor):
    return t.half() if t.dtype in dtypes_to_fp16 else t


def conv_bf16(t: Tensor):
    return t.bfloat16() if t.dtype in dtypes_to_bf16 else t


def conv_full(t):
    return t


_g_precision_func = {
    "full": conv_full,
    "fp32": conv_full,
    "fp16": conv_fp16,
    "bf16": conv_bf16,
}


def check_weight_type(k: str) -> str:
    if k.startswith("model.diffusion_model"):
        return "unet"
    elif k.startswith("first_stage_model"):
        return "vae"
    elif k.startswith("cond_stage_model"):
        return "clip"
    return "other"


def load_model(path):
    if path.endswith(".safetensors"):
        m = safetensors.torch.load_file(path, device="cpu")
    else:
        m = torch.load(path, map_location="cpu")
    state_dict = m["state_dict"] if "state_dict" in m else m
    return state_dict


def fix_model(model, fix_clip=False, force_position_id=False):
    # code from model-toolkit
    nai_keys = {
        'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
        'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
        'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.'
    }
    position_id_key = "cond_stage_model.transformer.text_model.embeddings.position_ids"
    for k in list(model.keys()):
        for r in nai_keys:
            if type(k) == str and k.startswith(r):
                new_key = k.replace(r, nai_keys[r])
                model[new_key] = model[k]
                del model[k]
                print(f"[Converter] Fixed novelai error key {k}")
                break

    if force_position_id and position_id_key in model:
        model[position_id_key] = model[position_id_key].to(torch.int64)

    if fix_clip:
        if position_id_key in model:
            correct = torch.Tensor([list(range(77))]).to(torch.int64)
            now = model[position_id_key].to(torch.int64)

            broken = correct.ne(now)
            broken = [i for i in range(77) if broken[0][i]]
            if len(broken) != 0:
                model[position_id_key] = correct
                print(f"[Converter] Fixed broken clip\n{broken}")
            else:
                print("[Converter] Clip in this model is fine, skip fixing...")
        else:
            print("[Converter] Missing position id in model, try fixing...")
            model[position_id_key] = torch.Tensor([list(range(77))]).to(torch.int64)

    return model


def convert_warp(
        model_name, model_path, directory,
        *args
):
    if sum(map(bool, [model_name, model_path, directory])) != 1:
        print("[Converter] Check your inputs. Multiple input was set or missing input")
        return

    if directory != "":
        if not os.path.exists(directory) or not os.path.isdir(directory):
            return "Error: path not exists or not dir"

        files = [f for f in os.listdir(directory) if f.endswith(".ckpt") or f.endswith(".safetensors")]

        if len(files) == 0:
            return "Error: cant found model in directory"

        # remove custom filename in batch processing
        _args = list(args)
        _args[3] = ""

        for m in files:
            do_convert(MockModelInfo(os.path.join(directory, m)), *_args)

    elif model_path != "":
        if os.path.exists(model_path):
            return do_convert(MockModelInfo(model_path), *args)

    elif model_name != "":
        model_info = sd_models.checkpoints_list[model_name]
        return do_convert(MockModelInfo(model_info.filename), *args)

    else:
        return "Error: must choose a model"


def do_convert(model_info: MockModelInfo,
               checkpoint_formats,
               precision, conv_type, custom_name,
               bake_in_vae,
               unet_conv, text_encoder_conv, vae_conv, others_conv,
               fix_clip, force_position_id, delete_known_junk_data):
    if len(checkpoint_formats) == 0:
        return "Error: at least choose one model save format"

    extra_opt = {
        "unet": unet_conv,
        "clip": text_encoder_conv,
        "vae": vae_conv,
        "other": others_conv
    }
    shared.state.begin()
    shared.state.job = 'model-convert'
    shared.state.textinfo = f"Loading {model_info.filename}..."
    print(f"[Converter] Loading {model_info.filename}...")

    ok = {}
    state_dict = load_model(model_info.filepath)
    fix_model(state_dict, fix_clip=fix_clip, force_position_id=force_position_id)

    conv_func = _g_precision_func[precision]

    def _hf(wk: str, t: Tensor):
        if not isinstance(t, Tensor):
            return
        weight_type = check_weight_type(wk)
        conv_t = extra_opt[weight_type]
        if conv_t == "convert":
            ok[wk] = conv_func(t)
        elif conv_t == "copy":
            ok[wk] = t
        elif conv_t == "delete":
            return

    print("[Converter] Converting model...")

    if conv_type == "ema-only":
        for k in tqdm.tqdm(state_dict):
            ema_k = "___"
            try:
                ema_k = "model_ema." + k[6:].replace(".", "")
            except:
                pass
            if ema_k in state_dict:
                _hf(k, state_dict[ema_k])
                # print("ema: " + ema_k + " > " + k)
            elif not k.startswith("model_ema.") or k in ["model_ema.num_updates", "model_ema.decay"]:
                _hf(k, state_dict[k])
            #     print(k)
            # else:
            #     print("skipped: " + k)
    elif conv_type == "no-ema":
        for k, v in tqdm.tqdm(state_dict.items()):
            if "model_ema." not in k:
                _hf(k, v)
    else:
        for k, v in tqdm.tqdm(state_dict.items()):
            _hf(k, v)

    if delete_known_junk_data:
        known_junk_data_prefix = [
            "embedding_manager.embedder.",
            "lora_te_text_model",
            "control_model."
        ]
        need_delete = []
        for key in ok.keys():
            for jk in known_junk_data_prefix:
                if key.startswith(jk):
                    need_delete.append(key)

        for k in need_delete:
            del ok[k]

    bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None)
    if bake_in_vae_filename is not None:
        print(f"[Converter] Baking in VAE from {bake_in_vae_filename}")
        vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu')

        for k, v in vae_dict.items():
            _hf(k, vae_dict[k])

        del vae_dict

    output = ""
    ckpt_dir = os.path.dirname(model_info.filepath)
    save_name = f"{model_info.model_name}-{precision}"
    if conv_type != "disabled":
        save_name += f"-{conv_type}"

    if fix_clip:
        save_name += f"-clip-fix"

    if custom_name != "":
        save_name = custom_name

    for fmt in checkpoint_formats:
        ext = ".safetensors" if fmt == "safetensors" else ".ckpt"
        _save_name = save_name + ext

        save_path = os.path.join(ckpt_dir, _save_name)
        print(f"[Converter] Saving to {save_path}...")

        if fmt == "safetensors":
            safetensors.torch.save_file(ok, save_path)
        else:
            torch.save({"state_dict": ok}, save_path)
        output += f"Checkpoint saved to {save_path}\n"

    shared.state.end()
    return output[:-1]