File size: 7,982 Bytes
0163a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# extract approximating LoRA by svd from two SD models
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo!
import argparse
import json
import os
import time
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from scripts.kohyas import sai_model_spec,model_util,sdxl_model_util,lora
CLAMP_QUANTILE = 0.99
MIN_DIFF = 1e-1
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == ".safetensors":
save_file(model, file_name)
else:
torch.save(model, file_name)
def svd(args):
def str_to_dtype(p):
if p == "float":
return torch.float
if p == "fp16":
return torch.float16
if p == "bf16":
return torch.bfloat16
return None
assert args.v2 != args.sdxl or (
not args.v2 and not args.sdxl
), "v2 and sdxl cannot be specified at the same time / v2とsdxlは同時に指定できません"
if args.v_parameterization is None:
args.v_parameterization = args.v2
save_dtype = str_to_dtype(args.save_precision)
# load models
if not args.sdxl:
print(f"loading original SD model : {args.model_org}")
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_org)
text_encoders_o = [text_encoder_o]
print(f"loading tuned SD model : {args.model_tuned}")
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_tuned)
text_encoders_t = [text_encoder_t]
model_version = model_util.get_model_version_str_for_sd1_sd2(args.v2, args.v_parameterization)
else:
print(f"loading original SDXL model : {args.model_org}")
text_encoder_o1, text_encoder_o2, _, unet_o, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, args.model_org, "cpu"
)
text_encoders_o = [text_encoder_o1, text_encoder_o2]
print(f"loading original SDXL model : {args.model_tuned}")
text_encoder_t1, text_encoder_t2, _, unet_t, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, args.model_tuned, "cpu"
)
text_encoders_t = [text_encoder_t1, text_encoder_t2]
model_version = sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0
# create LoRA network to extract weights: Use dim (rank) as alpha
if args.conv_dim is None:
kwargs = {}
else:
kwargs = {"conv_dim": args.conv_dim, "conv_alpha": args.conv_dim}
lora_network_o = lora.create_network(1.0, args.dim, args.dim, None, text_encoders_o, unet_o, **kwargs)
lora_network_t = lora.create_network(1.0, args.dim, args.dim, None, text_encoders_t, unet_t, **kwargs)
assert len(lora_network_o.text_encoder_loras) == len(
lora_network_t.text_encoder_loras
), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) "
# get diffs
diffs = {}
text_encoder_different = False
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = args.alpha * module_t.weight - args.beta * module_o.weight
# Text Encoder might be same
if not text_encoder_different and torch.max(torch.abs(diff)) > MIN_DIFF:
text_encoder_different = True
print(f"Text encoder is different. {torch.max(torch.abs(diff))} > {MIN_DIFF}")
diff = diff.float()
diffs[lora_name] = diff
if not text_encoder_different:
print("Text encoder is same. Extract U-Net only.")
lora_network_o.text_encoder_loras = []
diffs = {}
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = args.alpha * module_t.weight - args.beta * module_o.weight
diff = diff.float()
if args.device:
diff = diff.to(args.device)
diffs[lora_name] = diff
# make LoRA with svd
print("calculating by svd")
lora_weights = {}
with torch.no_grad():
for lora_name, mat in tqdm(list(diffs.items())):
# if args.conv_dim is None, diffs do not include LoRAs for conv2d-3x3
conv2d = len(mat.size()) == 4
kernel_size = None if not conv2d else mat.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
rank = args.dim if not conv2d_3x3 or args.conv_dim is None else args.conv_dim
out_dim, in_dim = mat.size()[0:2]
if args.device:
mat = mat.to(args.device)
# print(lora_name, mat.size(), mat.device, rank, in_dim, out_dim)
rank = min(rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim
if conv2d:
if conv2d_3x3:
mat = mat.flatten(start_dim=1)
else:
mat = mat.squeeze()
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :rank]
S = S[:rank]
U = U @ torch.diag(S)
Vh = Vh[:rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
if conv2d:
U = U.reshape(out_dim, rank, 1, 1)
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
U = U.to("cpu").contiguous()
Vh = Vh.to("cpu").contiguous()
lora_weights[lora_name] = (U, Vh)
# make state dict for LoRA
lora_sd = {}
for lora_name, (up_weight, down_weight) in lora_weights.items():
lora_sd[lora_name + ".lora_up.weight"] = up_weight
lora_sd[lora_name + ".lora_down.weight"] = down_weight
lora_sd[lora_name + ".alpha"] = torch.tensor(down_weight.size()[0])
# load state dict to LoRA and save it
lora_network_save, lora_sd = lora.create_network_from_weights(1.0, None, None, text_encoders_o, unet_o, weights_sd=lora_sd)
lora_network_save.apply_to(text_encoders_o, unet_o) # create internal module references for state_dict
info = lora_network_save.load_state_dict(lora_sd)
print(f"Loading extracted LoRA weights: {info}")
dir_name = os.path.dirname(args.save_to)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
# minimum metadata
net_kwargs = {}
if args.conv_dim is not None:
net_kwargs["conv_dim"] = args.conv_dim
net_kwargs["conv_alpha"] = args.conv_dim
metadata = {
"ss_v2": str(args.v2),
"ss_base_model_version": model_version,
"ss_network_module": "networks.lora",
"ss_network_dim": str(args.dim),
"ss_network_alpha": str(args.dim),
"ss_network_args": json.dumps(net_kwargs),
}
if not args.no_metadata:
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
None, args.v2, args.v_parameterization, args.sdxl, True, False, time.time(), title=title
)
metadata.update(sai_metadata)
lora_network_save.save_weights(args.save_to, save_dtype, metadata)
return f"LoRA weights are saved to: {args.save_to}"
|