File size: 62,098 Bytes
0163a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 |
import random
import os
import gc
import hashlib
import numpy as np
import os.path
import re
import torch
import tqdm
import datetime
import csv
import json
import launch
import torch.nn as nn
import scipy.ndimage
from copy import deepcopy
from PIL import Image, ImageFont, ImageDraw
from tqdm import tqdm
from functools import partial
from torch import Tensor, lerp
from torch.nn.functional import cosine_similarity, relu, softplus
from modules import shared, processing, sd_models, sd_vae, images, sd_samplers, scripts,devices, extras
from modules.ui import plaintext_to_html
from modules.shared import opts
from modules.processing import create_infotext,Processed
from modules.sd_models import load_model,unload_model_weights
from modules.generation_parameters_copypaste import create_override_settings_dict
from scripts.mergers.model_util import filenamecutter,savemodel
from math import ceil
import sys
from multiprocessing import cpu_count
from threading import Lock
from concurrent.futures import ThreadPoolExecutor, as_completed
from scripts.mergers.bcolors import bcolors
import collections
try:
ui_version = int(launch.git_tag().split("-",1)[0].replace("v","").replace(".",""))
except:
ui_version = 100
try:
from ldm_patched.modules import model_management
forge = True
except:
forge = False
orig_cache = 0
modelcache = collections.OrderedDict()
from inspect import currentframe
SELFKEYS = ["to_out","proj_out","norm"]
module_path = os.path.dirname(os.path.abspath(sys.modules[__name__].__file__))
scriptpath = os.path.dirname(module_path)
def tryit(func):
try:
func()
except:
pass
stopmerge = False
def freezemtime():
global stopmerge
stopmerge = True
mergedmodel=[]
FINETUNEX = ["IN","OUT","OUT2","CONT","BRI","COL1","COL2","COL3"]
TYPESEG = ["none","alpha","beta (if Triple or Twice is not selected,Twice automatically enable)","alpha and beta","seed",
"mbw alpha","mbw beta","mbw alpha and beta", "model_A","model_B","model_C","pinpoint blocks (alpha or beta must be selected for another axis)",
"include blocks", "exclude blocks","add include", "add exclude","elemental","add elemental","pinpoint element","effective elemental checker","adjust","pinpoint adjust (IN,OUT,OUT2,CONT,BRI,COL1,COL2,COL3)",
"calcmode","prompt","random"]
TYPES = ["none","alpha","beta","alpha and beta","seed", "mbw alpha ","mbw beta","mbw alpha and beta",
"model_A","model_B","model_C","pinpoint blocks","include blocks","exclude blocks","add include", "add exclude","elemental","add elemental","pinpoint element",
"effective","adjust","pinpoint adjust","calcmode","prompt","random"]
MODES=["Weight" ,"Add" ,"Triple","Twice"]
SAVEMODES=["save model", "overwrite"]
EXCLUDE_CHOICES = ["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11",
"M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11",
"Adjust","VAE"]
CHCKPOINT_DICT_SKIP_ON_MERGE = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]
#type[0:aplha,1:beta,2:seed,3:mbw,4:model_A,5:model_B,6:model_C]
#msettings=[0 weights_a,1 weights_b,2 model_a,3 model_b,4 model_c,5 base_alpha,6 base_beta,7 mode,8 useblocks,9 custom_name,10 save_sets,11 id_sets,12 wpresets]
#id sets "image", "PNG info","XY grid"
hear = False
hearm = False
NON4 = [None]*4
informer = sd_models.get_closet_checkpoint_match
#msettings=[weights_a,weights_b,model_a,model_b,model_c,device,base_alpha,base_beta,mode,loranames,useblocks,custom_name,save_sets,id_sets,wpresets,deep]
def smergegen(weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,
calcmode,useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,bake_in_vae,opt_value,inex,ex_blocks,ex_elems,
esettings,
s_prompt,s_nprompt,s_steps,s_sampler,s_cfg,s_seed,s_w,s_h,s_batch_size,
genoptions,s_hrupscaler,s_hr2ndsteps,s_denois_str,s_hr_scale,
lmode,lsets,llimits_u,llimits_l,lseed,lserial,lcustom,lround,
currentmodel,imggen,
*txt2imgparams):
lucks = {"on":False, "mode":lmode,"set":lsets,"upp":llimits_u,"low":llimits_l,"seed":lseed,"num":lserial,"cust":lcustom,"round":int(lround)}
deepprint = "print change" in esettings
cachedealer(True)
result,currentmodel,modelid,theta_0,metadata = smerge(
weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,calcmode,
useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,bake_in_vae,opt_value,inex,ex_blocks,ex_elems,deepprint,lucks
)
if "ERROR" in result or "STOPPED" in result:
return result,"not loaded",*NON4
checkpoint_info = sd_models.get_closet_checkpoint_match(model_a)
if ui_version >= 150: checkpoint_info = fake_checkpoint_info(checkpoint_info,metadata,currentmodel)
save = True if SAVEMODES[0] in save_sets else False
result = savemodel(theta_0,currentmodel,custom_name,save_sets,metadata) if save else "Merged model loaded:"+currentmodel
sd_models.model_data.__init__()
load_model(checkpoint_info, already_loaded_state_dict=theta_0)
cachedealer(False)
del theta_0
devices.torch_gc()
debug = "debug" in save_sets
if ("copy config" in save_sets) and ("(" not in result):
try:
extras.create_config(result.replace("Merged model saved in ",""), 0, informer(model_a), informer(model_b), informer(model_b))
except:
pass
if imggen :
images = simggen(s_prompt,s_nprompt,s_steps,s_sampler,s_cfg,s_seed,s_w,s_h,s_batch_size,
genoptions,s_hrupscaler,s_hr2ndsteps,s_denois_str,s_hr_scale,
currentmodel,id_sets,modelid,
*txt2imgparams,debug = debug)
return result,currentmodel,*images[:4]
else:
return result,currentmodel
def checkpointer_infomer(name):
return sd_models.get_closet_checkpoint_match(name)
# XXX hack. fake checkpoint_info
def fake_checkpoint_info(checkpoint_info,metadata,currentmodel):
from modules import cache
dump_cache = cache.dump_cache
c_cache = cache.cache
checkpoint_info = deepcopy(checkpoint_info)
# change model name etc.
sha256 = hashlib.sha256(json.dumps(metadata).encode("utf-8")).hexdigest()
checkpoint_info.sha256 = sha256
checkpoint_info.name_for_extra = currentmodel
checkpoint_info.name = checkpoint_info.name_for_extra + ".safetensors"
checkpoint_info.model_name = checkpoint_info.name_for_extra.replace("/", "_").replace("\\", "_")
checkpoint_info.title = f"{checkpoint_info.name} [{sha256[0:10]}]"
checkpoint_info.metadata = metadata
# for sd-webui v1.5.x
sd_models.checkpoints_list[checkpoint_info.title] = checkpoint_info
# force to set a new sha256 hash
if c_cache is not None:
hashes = c_cache("hashes")
hashes[f"checkpoint/{checkpoint_info.name}"] = {
"mtime": os.path.getmtime(checkpoint_info.filename),
"sha256": sha256,
}
# save cache
dump_cache()
# set ids for a fake checkpoint info
checkpoint_info.ids = [checkpoint_info.model_name, checkpoint_info.name, checkpoint_info.name_for_extra]
return checkpoint_info
NUM_INPUT_BLOCKS = 12
NUM_MID_BLOCK = 1
NUM_OUTPUT_BLOCKS = 12
NUM_TOTAL_BLOCKS = NUM_INPUT_BLOCKS + NUM_MID_BLOCK + NUM_OUTPUT_BLOCKS
BLOCKID=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"]
BLOCKIDXLL=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","VAE"]
BLOCKIDXL=['BASE', 'IN0', 'IN1', 'IN2', 'IN3', 'IN4', 'IN5', 'IN6', 'IN7', 'IN8', 'M', 'OUT0', 'OUT1', 'OUT2', 'OUT3', 'OUT4', 'OUT5', 'OUT6', 'OUT7', 'OUT8', 'VAE']
RANDMAP = [0,50,100] #alpha,beta,elements
statistics = {"sum":{},"mean":{},"max":{},"min":{}}
################################################
##### Main Merging Code
def smerge(weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,calcmode,
useblocks,custom_name,save_sets,id_sets,wpresets,deep,fine,bake_in_vae,opt_value,inex,ex_blocks,ex_elems,deepprint,lucks,main = [False,False,False]):
caster("merge start",hearm)
global hear,mergedmodel,stopmerge,statistics
stopmerge = False
debug = "debug" in save_sets
uselerp = "use old calc method" not in save_sets
device = "cuda" if "use cuda" in save_sets else "cpu"
if forge:
unload_forge()
else:
unload_model_weights(sd_models.model_data.sd_model)
# for from file
if type(useblocks) is str:
useblocks = True if useblocks =="True" else False
if type(base_alpha) == str:base_alpha = float(base_alpha)
if type(base_beta) == str:base_beta = float(base_beta)
#random
if lucks != {}:
if lucks["seed"] == -1: lucks["ceed"] = str(random.randrange(4294967294))
else: lucks["ceed"] = lucks["seed"]
else: lucks["ceed"] = 0
np.random.seed(int(lucks["ceed"]))
randomer = np.random.rand(2500)
cachetarget =[]
for model,num in zip([model_a,model_b,model_c],main):
if model != "" and num:
cachetarget.append(model)
weights_a,deep = randdealer(weights_a,randomer,0,lucks,deep)
weights_b,_ = randdealer(weights_b,randomer,1,lucks,None)
weights_a_orig = weights_a
weights_b_orig = weights_b
# preset to weights
if wpresets != False and useblocks:
weights_a = wpreseter(weights_a,wpresets)
weights_b = wpreseter(weights_b,wpresets)
# mode select booleans
usebeta = MODES[2] in mode or MODES[3] in mode or "tensor" in calcmode
metadata = {"format": "pt"}
if (calcmode == "trainDifference" or calcmode == "extract") and "Add" not in mode:
print(f"{bcolors.WARNING}Mode changed to add difference{bcolors.ENDC}")
mode = "Add"
if model_c == "" or model_c is None:
#fallback to avoid crash
model_c = model_a
print(f"{bcolors.WARNING}Substituting empty model_c with model_a{bcolors.ENDC}")
if not useblocks:
weights_a = weights_b = ""
#for save log and save current model
mergedmodel =[weights_a,weights_b,
hashfromname(model_a),hashfromname(model_b),hashfromname(model_c),
base_alpha,base_beta,mode,useblocks,custom_name,save_sets,id_sets,deep,calcmode,lucks["ceed"],fine,opt_value,inex,ex_blocks,ex_elems].copy()
model_a = namefromhash(model_a)
model_b = namefromhash(model_b)
model_c = namefromhash(model_c)
caster(mergedmodel,False)
#elementals
if len(deep) > 0:
deep = deep.replace("\n",",")
deep = deep.replace(calcmode+",","")
deep = deep.split(",")
#format check
if model_a =="" or model_b =="" or ((not MODES[0] in mode) and model_c=="") :
return "ERROR: Necessary model is not selected",*NON4
#for MBW text to list
if useblocks:
weights_a_t=weights_a.split(',',1)
weights_b_t=weights_b.split(',',1)
base_alpha = float(weights_a_t[0])
weights_a = [float(w) for w in weights_a_t[1].split(',')]
caster(f"from {weights_a_t}, alpha = {base_alpha},weights_a ={weights_a}",hearm)
if not (len(weights_a) == 25 or len(weights_a) == 19):return f"ERROR: weights alpha value must be 20 or 26.",*NON4
if usebeta:
base_beta = float(weights_b_t[0])
weights_b = [float(w) for w in weights_b_t[1].split(',')]
caster(f"from {weights_b_t}, beta = {base_beta},weights_a ={weights_b}",hearm)
if not(len(weights_b) == 25 or len(weights_b) == 19): return f"ERROR: weights beta value must be 20 or 26.",*NON4
caster("model load start",hearm)
printstart(model_a,model_b,model_c,base_alpha,base_beta,weights_a,weights_b,mode,useblocks,calcmode,deep,lucks['ceed'],fine,inex,ex_blocks,ex_elems)
theta_1=load_model_weights_m(model_b,2,cachetarget,device).copy()
isxl = "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.weight" in theta_1.keys()
#adjust
if fine.rstrip(",0") != "":
fine = fineman(fine,isxl)
else:
fine = ""
if isxl and useblocks:
if len(weights_a) == 25:
weights_a = weighttoxl(weights_a)
print(f"alpha weight converted for XL{weights_a}")
if usebeta:
if len(weights_b) == 25:
weights_b = weighttoxl(weights_b)
print(f"beta weight converted for XL{weights_b}")
if len(weights_a) == 19: weights_a = weights_a + [0]
if len(weights_b) == 19: weights_b = weights_b + [0]
if MODES[1] in mode:#Add
if stopmerge: return "STOPPED", *NON4
if calcmode == "trainDifference" or calcmode == "extract":
theta_2 = load_model_weights_m(model_c,3,cachetarget,device).copy()
else:
theta_2 = load_model_weights_m(model_c,3,cachetarget,device).copy()
for key in tqdm(theta_1.keys()):
if 'model' in key:
if key in theta_2:
t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
theta_1[key] = theta_1[key]- t2
else:
theta_1[key] = torch.zeros_like(theta_1[key])
del theta_2
if stopmerge: return "STOPPED", *NON4
if "tensor" in calcmode or "self" in calcmode:
theta_t = load_model_weights_m(model_a,1,cachetarget,device).copy()
theta_0 ={}
for key in theta_t:
theta_0[key] = theta_t[key].clone()
del theta_t
else:
theta_0=load_model_weights_m(model_a,1,cachetarget,device).copy()
if MODES[2] in mode or MODES[3] in mode:#Tripe or Twice
theta_2 = load_model_weights_m(model_c,3,cachetarget,device).copy()
else:
if not (calcmode == "trainDifference" or calcmode == "extract"):
theta_2 = {}
alpha = base_alpha
beta = base_beta
ex_elems = ex_elems.split(",")
keyratio = []
key_and_alpha = {}
##### Stage 0/2 in Cosine
if "cosine" in calcmode:
sim, sims = precosine("A" in calcmode,theta_0,theta_1)
##### Stage 1/2
for num, key in enumerate(tqdm(theta_0.keys(), desc="Stage 1/2") if not False else theta_0.keys()):
if stopmerge: return "STOPPED", *NON4
if not ("model" in key and key in theta_1): continue
if not ("weight" in key or "bias" in key): continue
if calcmode == "trainDifference" or calcmode == "extract":
if key not in theta_2:
continue
else:
if usebeta and (not key in theta_2) and (not theta_2 == {}) :
continue
weight_index = -1
current_alpha = alpha
current_beta = beta
a = list(theta_0[key].shape)
b = list(theta_1[key].shape)
# this enables merging an inpainting model (A) with another one (B);
# where normal model would have 4 channels, for latenst space, inpainting model would
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
if a != b and a[0:1] + a[2:] == b[0:1] + b[2:]:
if a[1] == 4 and b[1] == 9:
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
if a[1] == 4 and b[1] == 8:
raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.")
if a[1] == 8 and b[1] == 4:#If we have an Instruct-Pix2Pix model...
result_is_instruct_pix2pix_model = True
else:
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
result_is_inpainting_model = True
block,blocks26 = blockfromkey(key,isxl)
if block == "Not Merge": continue
if inex != "Off" and (ex_blocks or (ex_elems != [""])) and excluder(blocks26,inex,ex_blocks,ex_elems,key): continue
weight_index = BLOCKIDXLL.index(blocks26) if isxl else BLOCKID.index(blocks26)
if useblocks:
if weight_index > 0:
current_alpha = weights_a[weight_index - 1]
if usebeta:
current_beta = weights_b[weight_index - 1]
if len(deep) > 0:
current_alpha = elementals(key,weight_index,deep,randomer,num,lucks,deepprint,current_alpha)
keyratio.append([key,current_alpha, current_beta])
#keyratio.append([key,current_alpha, current_beta,list(theta_0[key].shape),torch.sum(theta_0[key]).item(), torch.mean(theta_0[key]).item(), torch.max(theta_0[key]).item(), torch.min(theta_0[key]).item()])
if calcmode == "normal":
if a != b and a[0:1] + a[2:] == b[0:1] + b[2:]:
# Merge only the vectors the models have in common. Otherwise we get an error due to dimension mismatch.
theta_0_a = theta_0[key][:, 0:4, :, :]
else:
theta_0_a = theta_0[key]
if MODES[1] in mode:#Add
caster(f"{num}, {block}, {model_a}+{current_alpha}+*({model_b}-{model_c}),{key}",hear)
theta_0_a = theta_0_a + current_alpha * theta_1[key]
elif MODES[2] in mode:#Triple
caster(f"{num}, {block}, {model_a}+{1-current_alpha-current_beta}+{model_b}*{current_alpha}+ {model_c}*{current_beta}",hear)
#
if uselerp and current_alpha + current_beta != 0:
theta_0_a =lerp(theta_0_a.to(torch.float32),lerp(theta_1[key].to(torch.float32),theta_2[key].to(torch.float32),current_beta/(current_alpha + current_beta)),current_alpha + current_beta).to(theta_0_a.dtype)
else:
theta_0_a = (1 - current_alpha-current_beta) * theta_0_a + current_alpha * theta_1[key]+current_beta * theta_2[key]
elif MODES[3] in mode:#Twice
caster(f"{num}, {block}, {key},{model_a} + {1-current_alpha} + {model_b}*{current_alpha}",hear)
caster(f"{num}, {block}, {key}({model_a}+{model_b}) +{1-current_beta}+{model_c}*{current_beta}",hear)
if uselerp:
theta_0_a = torch.lerp(torch.lerp(theta_0_a.to(torch.float32), theta_1[key].to(torch.float32), current_alpha), theta_2[key].to(torch.float32), current_beta).to(theta_0_a.dtype)
else:
theta_0_a = (1 - current_alpha) * theta_0_a + current_alpha * theta_1[key]
theta_0_a = (1 - current_beta) * theta_0_a + current_beta * theta_2[key]
else:#Weight
if current_alpha == 1:
caster(f"{num}, {block}, {key} alpha = 1,{model_a}={model_b}",hear)
theta_0_a = theta_1[key]
elif current_alpha !=0:
caster(f"{num}, {block}, {key}, {model_a}*{1-current_alpha}+{model_b}*{current_alpha}",hear)
if uselerp:
theta_0_a = torch.lerp(theta_0_a.to(torch.float32), theta_1[key].to(torch.float32), current_alpha).to(theta_0_a.dtype)
else:
theta_0_a = (1 - current_alpha) * theta_0_a + current_alpha * theta_1[key]
if a != b and a[0:1] + a[2:] == b[0:1] + b[2:]:
theta_0[key][:, 0:4, :, :] = theta_0_a
else:
theta_0[key] = theta_0_a
del theta_0_a, a, b
elif "cosine" in calcmode:
if "first_stage_model" in key: continue
cosine(calcmode,key,sim,sims,current_alpha,theta_0,theta_1,num,block,uselerp)
elif calcmode == "trainDifference":
if torch.allclose(theta_1[key].float(), theta_2[key].float(), rtol=0, atol=0):
theta_2[key] = theta_0[key]
continue
traindiff(key,current_alpha,theta_0,theta_1,theta_2)
elif calcmode == "smoothAdd":
caster(f"{num}, {block}, model A[{key}] + {current_alpha} + * (model B - model C)[{key}]", hear)
# Apply median filter to the weight differences
filtered_diff = scipy.ndimage.median_filter(theta_1[key].to(torch.float32).cpu().numpy(), size=3)
# Apply Gaussian filter to the filtered differences
filtered_diff = scipy.ndimage.gaussian_filter(filtered_diff, sigma=1)
theta_1[key] = torch.tensor(filtered_diff)
# Add the filtered differences to the original weights
theta_0[key] = theta_0[key] + current_alpha * theta_1[key]
elif calcmode == "smoothAdd MT":
key_and_alpha[key] = current_alpha
elif "tensor" in calcmode:
dim = theta_0[key].dim()
if dim == 0 : continue
tensormerge("2" not in calcmode,key,dim,theta_0,theta_1,current_alpha,current_beta)
elif "extract" == calcmode:
theta_0[key] = extract_super(theta_0[key],theta_1[key],theta_2[key],current_alpha,current_beta,opt_value)
elif calcmode == "self":
if any(selfkey in key for selfkey in SELFKEYS):continue
if current_alpha == 0: continue
theta_0[key] = (theta_0[key].clone()) * current_alpha
elif calcmode == "plus random":
if any(selfkey in key for selfkey in SELFKEYS):continue
if current_alpha == 0: continue
theta_0[key] += torch.randn_like(theta_0[key].clone()) * current_alpha
##### Adjust
if any(item in key for item in FINETUNES) and fine:
index = FINETUNES.index(key)
if 5 > index :
theta_0[key] =theta_0[key]* fine[index]
else :theta_0[key] =theta_0[key] + torch.tensor(fine[5]).to(theta_0[key].device)
if calcmode == "smoothAdd MT":
# setting threads to higher than 8 doesn't significantly affect the time for merging
threads = cpu_count()
tasks_per_thread = 8
theta_0, theta_1, stopped = multithread_smoothadd(key_and_alpha, theta_0, theta_1, threads, tasks_per_thread, hear)
if stopped:
return "STOPPED", *NON4
currentmodel = makemodelname(weights_a,weights_b,model_a, model_b,model_c, base_alpha,base_beta,useblocks,mode,calcmode)
for key in tqdm(theta_1.keys(), desc="Stage 2/2"):
if key in CHCKPOINT_DICT_SKIP_ON_MERGE:
continue
if "model" in key and key not in theta_0:
theta_0.update({key:theta_1[key]})
del theta_1
if calcmode == "trainDifference" or calcmode == "extract":
del theta_2
##### BakeVAE
bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None)
if bake_in_vae_filename is not None:
print(f"Baking in VAE from {bake_in_vae_filename}")
vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu')
for key in vae_dict.keys():
theta_0_key = 'first_stage_model.' + key
if theta_0_key in theta_0:
theta_0[theta_0_key] = vae_dict[key]
del vae_dict
modelid = rwmergelog(currentmodel,mergedmodel)
if "save E-list" in lucks["set"]: saveekeys(keyratio,modelid)
caster(mergedmodel,False)
if "Reset CLIP ids" in save_sets: resetclip(theta_0)
if True: # always set metadata. savemodel() will check save_sets later
merge_recipe = {
"type": "sd-webui-supermerger",
"weights_alpha": weights_a if useblocks else None,
"weights_beta": weights_b if useblocks else None,
"weights_alpha_orig": weights_a_orig if useblocks else None,
"weights_beta_orig": weights_b_orig if useblocks else None,
"model_a": longhashfromname(model_a),
"model_b": longhashfromname(model_b),
"model_c": longhashfromname(model_c),
"base_alpha": base_alpha,
"base_beta": base_beta,
"mode": mode,
"mbw": useblocks,
"elemental_merge": deep,
"calcmode" : calcmode,
f"{inex}":ex_blocks + ex_elems
}
metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
metadata["sd_merge_models"] = {}
def add_model_metadata(checkpoint_name):
checkpoint_info = sd_models.get_closet_checkpoint_match(checkpoint_name)
checkpoint_info.calculate_shorthash()
metadata["sd_merge_models"][checkpoint_info.sha256] = {
"name": checkpoint_name,
"legacy_hash": checkpoint_info.hash
}
#metadata["sd_merge_models"].update(checkpoint_info.metadata.get("sd_merge_models", {}))
if model_a:
add_model_metadata(model_a)
if model_b:
add_model_metadata(model_b)
if model_c:
add_model_metadata(model_c)
metadata["sd_merge_models"] = json.dumps(metadata["sd_merge_models"])
return "",currentmodel,modelid,theta_0,metadata
################################################
##### cosineA/B
def precosine(calcmode,theta_0,theta_1):
if calcmode: #favors modelA's structure with details from B
if stopmerge: return "STOPPED", *NON4
sim = torch.nn.CosineSimilarity(dim=0)
sims = np.array([], dtype=np.float64)
for key in (tqdm(theta_0.keys(), desc="Stage 0/2")):
# skip VAE model parameters to get better results
if "first_stage_model" in key: continue
if "model" in key and key in theta_1:
theta_0_norm = nn.functional.normalize(theta_0[key].to(torch.float32), p=2, dim=0)
theta_1_norm = nn.functional.normalize(theta_1[key].to(torch.float32), p=2, dim=0)
simab = sim(theta_0_norm, theta_1_norm)
sims = np.append(sims,simab.cpu().numpy())
sims = sims[~np.isnan(sims)]
sims = np.delete(sims, np.where(sims<np.percentile(sims, 1 ,method = 'midpoint')))
sims = np.delete(sims, np.where(sims>np.percentile(sims, 99 ,method = 'midpoint')))
else: #favors modelB's structure with details from A
if stopmerge: return "STOPPED", *NON4
sim = torch.nn.CosineSimilarity(dim=0)
sims = np.array([], dtype=np.float64)
for key in (tqdm(theta_0.keys(), desc="Stage 0/2")):
# skip VAE model parameters to get better results
if "first_stage_model" in key: continue
if "model" in key and key in theta_1:
simab = sim(theta_0[key].to(torch.float32), theta_1[key].to(torch.float32))
dot_product = torch.dot(theta_0[key].view(-1).to(torch.float32), theta_1[key].view(-1).to(torch.float32))
magnitude_similarity = dot_product / (torch.norm(theta_0[key].to(torch.float32)) * torch.norm(theta_1[key].to(torch.float32)))
combined_similarity = (simab + magnitude_similarity) / 2.0
sims = np.append(sims, combined_similarity.cpu().numpy())
sims = sims[~np.isnan(sims)]
sims = np.delete(sims, np.where(sims < np.percentile(sims, 1, method='midpoint')))
sims = np.delete(sims, np.where(sims > np.percentile(sims, 99, method='midpoint')))
return sim, sims
def cosine(mode,key,sim,sims,current_alpha,theta_0,theta_1,num,block,uselerp):
if "A" in mode: #favors modelA's structure with details from B
# skip VAE model parameters to get better results
if "model" in key and key in theta_0:
# Normalize the vectors before merging
theta_0_norm = nn.functional.normalize(theta_0[key].to(torch.float32), p=2, dim=0)
theta_1_norm = nn.functional.normalize(theta_1[key].to(torch.float32), p=2, dim=0)
simab = sim(theta_0_norm, theta_1_norm)
dot_product = torch.dot(theta_0_norm.view(-1), theta_1_norm.view(-1))
magnitude_similarity = dot_product / (torch.norm(theta_0_norm) * torch.norm(theta_1_norm))
combined_similarity = (simab + magnitude_similarity) / 2.0
k = (combined_similarity - sims.min()) / (sims.max() - sims.min())
k = k - abs(current_alpha)
k = k.clip(min=0,max=1.0)
caster(f"{num}, {block}, model A[{key}] {1-k} + (model B)[{key}]*{k}",hear)
if uselerp:
theta_0[key] = lerp(theta_1[key].to(torch.float32), theta_0[key].to(torch.float32),k).to(theta_0[key].dtype)
else:
theta_0[key] = theta_1[key] * (1 - k) + theta_0[key] * k
else: #favors modelB's structure with details from A
# skip VAE model parameters to get better results
if "model" in key and key in theta_0:
simab = sim(theta_0[key].to(torch.float32), theta_1[key].to(torch.float32))
dot_product = torch.dot(theta_0[key].view(-1).to(torch.float32), theta_1[key].view(-1).to(torch.float32))
magnitude_similarity = dot_product / (torch.norm(theta_0[key].to(torch.float32)) * torch.norm(theta_1[key].to(torch.float32)))
combined_similarity = (simab + magnitude_similarity) / 2.0
k = (combined_similarity - sims.min()) / (sims.max() - sims.min())
k = k - current_alpha
k = k.clip(min=0,max=1.0)
caster(f"{num}, {block}, model A[{key}] *{1-k} + (model B)[{key}]*{k}",hear)
if uselerp:
theta_0[key] = lerp(theta_1[key].to(torch.float32), theta_0[key].to(torch.float32),k).to(theta_0[key].dtype)
else:
theta_0[key] = theta_1[key] * (1 - k) + theta_0[key] * k
################################################
##### Traindiff
def traindiff(key,current_alpha,theta_0,theta_1,theta_2):
# Check if theta_1[key] is equal to theta_2[key]
diff_AB = theta_1[key].float() - theta_2[key].float()
distance_A0 = torch.abs(theta_1[key].float() - theta_2[key].float())
distance_A1 = torch.abs(theta_1[key].float() - theta_0[key].float())
sum_distances = distance_A0 + distance_A1
scale = torch.where(sum_distances != 0, distance_A1 / sum_distances, torch.tensor(0.).float())
sign_scale = torch.sign(theta_1[key].float() - theta_2[key].float())
scale = sign_scale * torch.abs(scale)
new_diff = scale * torch.abs(diff_AB)
theta_0[key] = theta_0[key] + (new_diff * (current_alpha*1.8))
################################################
##### Extract
def extract_super(base: Tensor | None, a: Tensor, b: Tensor, alpha: float, beta: float, gamma: float) -> Tensor:
assert base is None or base.shape == a.shape
assert a.shape == b.shape
assert 0 <= alpha <= 1
assert 0 <= beta <= 1
assert 0 <= gamma
dtype = base.dtype if base is not None else a.dtype
base = base.float() if base is not None else 0
a = a.float() - base
b = b.float() - base
c = cosine_similarity(a, b, -1).clamp(-1, 1).unsqueeze(-1)
d = ((c + 1) / 2) ** gamma
result = base + lerp(a, b, alpha) * lerp(d, 1 - d, beta)
return result.to(dtype)
def extract(a: Tensor, b: Tensor, p: float, smoothness: float) -> Tensor:
assert a.shape == b.shape
assert 0 <= p <= 1
assert 0 <= smoothness <= 1
r = relu if smoothness == 0 else partial(softplus, beta=1 / smoothness)
c = r(cosine_similarity(a, b, dim=-1)).unsqueeze(dim=-1).repeat_interleave(b.shape[-1], -1)
m = torch.lerp(c, torch.ones_like(c) - c, p)
return a * m
################################################
##### Tensor Merge
def tensormerge(mode,key,dim, theta_0,theta_1,current_alpha,current_beta):
if mode:
if current_alpha+current_beta <= 1 :
talphas = int(theta_0[key].shape[0]*(current_beta))
talphae = int(theta_0[key].shape[0]*(current_alpha+current_beta))
if dim == 1:
theta_0[key][talphas:talphae] = theta_1[key][talphas:talphae].clone()
elif dim == 2:
theta_0[key][talphas:talphae,:] = theta_1[key][talphas:talphae,:].clone()
elif dim == 3:
theta_0[key][talphas:talphae,:,:] = theta_1[key][talphas:talphae,:,:].clone()
elif dim == 4:
theta_0[key][talphas:talphae,:,:,:] = theta_1[key][talphas:talphae,:,:,:].clone()
else:
talphas = int(theta_0[key].shape[0]*(current_alpha+current_beta-1))
talphae = int(theta_0[key].shape[0]*(current_beta))
theta_t = theta_1[key].clone()
if dim == 1:
theta_t[talphas:talphae] = theta_0[key][talphas:talphae].clone()
elif dim == 2:
theta_t[talphas:talphae,:] = theta_0[key][talphas:talphae,:].clone()
elif dim == 3:
theta_t[talphas:talphae,:,:] = theta_0[key][talphas:talphae,:,:].clone()
elif dim == 4:
theta_t[talphas:talphae,:,:,:] = theta_0[key][talphas:talphae,:,:,:].clone()
theta_0[key] = theta_t
else:
if current_alpha+current_beta <= 1 :
talphas = int(theta_0[key].shape[0]*(current_beta))
talphae = int(theta_0[key].shape[0]*(current_alpha+current_beta))
if dim > 1:
if theta_0[key].shape[1] > 100:
talphas = int(theta_0[key].shape[1]*(current_beta))
talphae = int(theta_0[key].shape[1]*(current_alpha+current_beta))
if dim == 1:
theta_0[key][talphas:talphae] = theta_1[key][talphas:talphae].clone()
elif dim == 2:
theta_0[key][:,talphas:talphae] = theta_1[key][:,talphas:talphae].clone()
elif dim == 3:
theta_0[key][:,talphas:talphae,:] = theta_1[key][:,talphas:talphae,:].clone()
elif dim == 4:
theta_0[key][:,talphas:talphae,:,:] = theta_1[key][:,talphas:talphae,:,:].clone()
else:
talphas = int(theta_0[key].shape[0]*(current_alpha+current_beta-1))
talphae = int(theta_0[key].shape[0]*(current_beta))
theta_t = theta_1[key].clone()
if dim > 1:
if theta_0[key].shape[1] > 100:
talphas = int(theta_0[key].shape[1]*(current_alpha+current_beta-1))
talphae = int(theta_0[key].shape[1]*(current_beta))
if dim == 1:
theta_t[talphas:talphae] = theta_0[key][talphas:talphae].clone()
elif dim == 2:
theta_t[:,talphas:talphae] = theta_0[key][:,talphas:talphae].clone()
elif dim == 3:
theta_t[:,talphas:talphae,:] = theta_0[key][:,talphas:talphae,:].clone()
elif dim == 4:
theta_t[:,talphas:talphae,:,:] = theta_0[key][:,talphas:talphae,:,:].clone()
theta_0[key] = theta_t
################################################
##### Multi Thread SmoothAdd
def multithread_smoothadd(key_and_alpha, theta_0, theta_1, threads, tasks_per_thread, hear):
lock_theta_0 = Lock()
lock_theta_1 = Lock()
lock_progress = Lock()
def thread_callback(keys):
nonlocal theta_0, theta_1
if stopmerge:
return False
for key in keys:
caster(f"model A[{key}] + {key_and_alpha[key]} + * (model B - model C)[{key}]", hear)
filtered_diff = scipy.ndimage.median_filter(theta_1[key].to(torch.float32).cpu().numpy(), size=3)
filtered_diff = scipy.ndimage.gaussian_filter(filtered_diff, sigma=1)
with lock_theta_1:
theta_1[key] = torch.tensor(filtered_diff)
with lock_theta_0:
theta_0[key] = theta_0[key] + key_and_alpha[key] * theta_1[key]
with lock_progress:
progress.update(len(keys))
return True
def extract_and_remove(input_list, count):
extracted = input_list[:count]
del input_list[:count]
return extracted
keys = list(key_and_alpha.keys())
total_threads = ceil(len(keys) / int(tasks_per_thread))
print(f"max threads = {threads}, total threads = {total_threads}, tasks per thread = {tasks_per_thread}")
progress = tqdm(key_and_alpha.keys(), desc="smoothAdd MT")
futures = []
with ThreadPoolExecutor(max_workers=threads) as executor:
futures = [executor.submit(thread_callback, extract_and_remove(keys, int(tasks_per_thread))) for i in range(total_threads)]
for future in as_completed(futures):
if not future.result():
executor.shutdown()
return theta_0, theta_1, True
del progress
return theta_0, theta_1, False
################################################
##### Elementals
def elementals(key,weight_index,deep,randomer,num,lucks,deepprint,current_alpha):
skey = key + BLOCKID[weight_index]
for d in deep:
if d.count(":") != 2 :continue
dbs,dws,dr = d.split(":")[0],d.split(":")[1],d.split(":")[2]
dbs = blocker(dbs,BLOCKID)
dbs,dws = dbs.split(" "), dws.split(" ")
dbn,dbs = (True,dbs[1:]) if dbs[0] == "NOT" else (False,dbs)
dwn,dws = (True,dws[1:]) if dws[0] == "NOT" else (False,dws)
flag = dbn
for db in dbs:
if db in skey:
flag = not dbn
if flag:flag = dwn
else:continue
for dw in dws:
if dw in skey:
flag = not dwn
if flag:
dr = eratiodealer(dr,randomer,weight_index,num,lucks)
if deepprint :print(" ", dbs,dws,key,dr)
current_alpha = dr
return current_alpha
def forkforker(filename,device):
try:
return sd_models.read_state_dict(filename,map_location = device)
except:
return sd_models.read_state_dict(filename)
################################################
##### Load Model
def load_model_weights_m(model,abc,cachetarget,device):
checkpoint_info = sd_models.get_closet_checkpoint_match(model)
sd_model_name = checkpoint_info.model_name
if checkpoint_info in modelcache:
print(f"Loading weights [{sd_model_name}] from cache")
return {k: v.to(device) for k, v in modelcache[checkpoint_info].items()}
else:
print(f"Loading weights [{sd_model_name}] from file")
state_dict = forkforker(checkpoint_info.filename,device)
if orig_cache >= abc:
modelcache[checkpoint_info] = state_dict
modelcache[checkpoint_info] = {k: v.to("cpu") for k, v in modelcache[checkpoint_info].items()}
dontdelete = []
for model in cachetarget:
dontdelete.append(sd_models.get_closet_checkpoint_match(model))
while len(modelcache) > orig_cache:
for key in modelcache.keys():
if key in dontdelete:continue
modelcache.pop(key)
break
return state_dict
def makemodelname(weights_a,weights_b,model_a, model_b,model_c, alpha,beta,useblocks,mode,calc):
model_a=filenamecutter(model_a)
model_b=filenamecutter(model_b)
model_c=filenamecutter(model_c)
if type(alpha) == str:alpha = float(alpha)
if type(beta)== str:beta = float(beta)
if useblocks:
if MODES[1] in mode:#add
currentmodel =f"{model_a} + ({model_b} - {model_c}) x alpha ({str(round(alpha,3))},{','.join(str(s) for s in weights_a)})"
elif MODES[2] in mode:#triple
currentmodel =f"{model_a} x (1-alpha-beta) + {model_b} x alpha + {model_c} x beta (alpha = {str(round(alpha,3))},{','.join(str(s) for s in weights_a)},beta = {beta},{','.join(str(s) for s in weights_b)})"
elif MODES[3] in mode:#twice
currentmodel =f"({model_a} x (1-alpha) + {model_b} x alpha)x(1-beta)+ {model_c} x beta ({str(round(alpha,3))},{','.join(str(s) for s in weights_a)})_({str(round(beta,3))},{','.join(str(s) for s in weights_b)})"
else:
currentmodel =f"{model_a} x (1-alpha) + {model_b} x alpha ({str(round(alpha,3))},{','.join(str(s) for s in weights_a)})"
else:
if MODES[1] in mode:#add
currentmodel =f"{model_a} + ({model_b} - {model_c}) x {str(round(alpha,3))}"
elif MODES[2] in mode:#triple
currentmodel =f"{model_a} x {str(round(1-alpha-beta,3))} + {model_b} x {str(round(alpha,3))} + {model_c} x {str(round(beta,3))}"
elif MODES[3] in mode:#twice
currentmodel =f"({model_a} x {str(round(1-alpha,3))} +{model_b} x {str(round(alpha,3))}) x {str(round(1-beta,3))} + {model_c} x {str(round(beta,3))}"
else:
currentmodel =f"{model_a} x {str(round(1-alpha,3))} + {model_b} x {str(round(alpha,3))}"
if calc != "normal":
currentmodel = currentmodel + "_" + calc
if calc == "tensor":
currentmodel = currentmodel + f"_beta_{beta}"
return currentmodel
path_root = scripts.basedir()
################################################
##### Logging
def rwmergelog(mergedname = "",settings= [],id = 0):
# for compatible
mode_info = {
"Weight sum": "Weight sum:A*(1-alpha)+B*alpha",
"Add difference": "Add difference:A+(B-C)*alpha",
"Triple sum": "Triple sum:A*(1-alpha-beta)+B*alpha+C*beta",
"sum Twice": "sum Twice:(A*(1-alpha)+B*alpha)*(1-beta)+C*beta",
}
setting = settings.copy()
if len(setting) > 7 and setting[7] in mode_info:
setting[7] = mode_info[setting[7]] # fix mode entry for compatible
filepath = os.path.join(path_root, "mergehistory.csv")
is_file = os.path.isfile(filepath)
csv.field_size_limit(2244096)
if not is_file:
with open(filepath, 'a') as f:
#msettings=[0 weights_a,1 weights_b,2 model_a,3 model_b,4 model_c,5 base_alpha,6 base_beta,7 mode,8 useblocks,9 custom_name,10 save_sets,11 id_sets, 12 deep 13 calcmode]
f.writelines('"ID","time","name","weights alpha","weights beta","model A","model B","model C","alpha","beta","mode","use MBW","plus lora","custum name","save setting","use ID"\n')
with open(filepath, 'r+') as f:
reader = csv.reader(f)
mlist = [raw for raw in reader]
if mergedname != "":
mergeid = len(mlist)
setting.insert(0,mergedname)
for i,x in enumerate(setting):
if "," in str(x) or "\n" in str(x):setting[i] = f'"{str(setting[i])}"'
text = ",".join(map(str, setting))
text=str(mergeid)+","+datetime.datetime.now().strftime('%Y.%m.%d %H.%M.%S.%f')[:-7]+"," + text + "\n"
f.writelines(text)
return mergeid
try:
out = mlist[int(id)]
except:
out = "ERROR: OUT of ID index"
return out
def saveekeys(keyratio,modelid):
import csv
path_root = scripts.basedir()
dir_path = os.path.join(path_root,"extensions","sd-webui-supermerger","scripts", "data")
if not os.path.exists(dir_path):
os.makedirs(dir_path)
filepath = os.path.join(dir_path,f"{modelid}.csv")
with open(filepath, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerows(keyratio)
def savestatics(modelid):
for key in statistics.keys():
result = [[tkey] + list(statistics[key][tkey]) for tkey in statistics[key].keys()]
saveekeys(result,f"{modelid}_{key}")
def get_font(fontsize):
fontpath = os.path.join(scriptpath, "Roboto-Regular.ttf")
try:
return ImageFont.truetype(opts.font or fontpath, fontsize)
except Exception:
return ImageFont.truetype(fontpath, fontsize)
def draw_origin(grid, text,width,height,width_one):
grid_d= Image.new("RGB", (grid.width,grid.height), "white")
grid_d.paste(grid,(0,0))
d= ImageDraw.Draw(grid_d)
color_active = (0, 0, 0)
fontsize = (width+height)//25
fnt = get_font(fontsize)
if grid.width != width_one:
while d.multiline_textbbox((0,0), text, font=fnt)[2] > width_one*0.75 and fontsize > 0:
fontsize -=1
fnt = get_font(fontsize)
d.multiline_text((0,0), text, font=fnt, fill=color_active,align="center")
return grid_d
def wpreseter(w,presets):
if "," not in w and w != "":
presets=presets.splitlines()
wdict={}
for l in presets:
if ":" in l :
key = l.split(":",1)[0]
wdict[key.strip()]=l.split(":",1)[1]
if "\t" in l:
key = l.split("\t",1)[0]
wdict[key.strip()]=l.split("\t",1)[1]
if w.strip() in wdict:
name = w
w = wdict[w.strip()]
print(f"weights {name} imported from presets : {w}")
return w
def fullpathfromname(name):
if hash == "" or hash ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
return checkpoint_info.filename
def namefromhash(hash):
if hash == "" or hash ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(hash)
return checkpoint_info.model_name
def hashfromname(name):
from modules import sd_models
if name == "" or name ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
if checkpoint_info.shorthash is not None:
return checkpoint_info.shorthash
return checkpoint_info.calculate_shorthash()
def longhashfromname(name):
from modules import sd_models
if name == "" or name ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
if checkpoint_info.sha256 is not None:
return checkpoint_info.sha256
checkpoint_info.calculate_shorthash()
return checkpoint_info.sha256
################################################
##### Random
RANCHA = ["R","U","X"]
def randdealer(w:str,randomer,ab,lucks,deep):
up,low = lucks["upp"],lucks["low"]
up,low = (up.split(","),low.split(","))
out = []
outd = {"R":[],"U":[],"X":[]}
add = RANDMAP[ab]
for i, r in enumerate (w.split(",")):
if r.strip() =="R":
out.append(str(round(randomer[i+add],lucks["round"])))
elif r.strip() == "U":
out.append(str(round(-2 * randomer[i+add] + 1.5,lucks["round"])))
elif r.strip() == "X":
out.append(str(round((float(low[i])-float(up[i]))* randomer[i+add] + float(up[i]),lucks["round"])))
elif "E" in r:
key = r.strip().replace("E","")
outd[key].append(BLOCKID[i])
out.append("0")
else:
out.append(r)
for key in outd.keys():
if outd[key] != []:
deep = deep + f",{' '.join(outd[key])}::{key}" if deep else f"{' '.join(outd[key])}::{key}"
return ",".join(out), deep
def eratiodealer(dr,randomer,block,num,lucks):
if any(element in dr for element in RANCHA):
up,low = lucks["upp"],lucks["low"]
up,low = (up.split(","),low.split(","))
add = RANDMAP[2]
if dr.strip() =="R":
return round(randomer[num+add],lucks["round"])
elif dr.strip() == "U":
return round(-2 * randomer[num+add] + 1,lucks["round"])
elif dr.strip() == "X":
return round((float(low[block])-float(up[block]))* randomer[num+add] + float(up[block]),lucks["round"])
else:
return float(dr)
################################################
##### Generate Image
def simggen(s_prompt,s_nprompt,s_steps,s_sampler,s_cfg,s_seed,s_w,s_h,s_batch_size,
genoptions,s_hrupscaler,s_hr2ndsteps,s_denois_str,s_hr_scale,
mergeinfo,id_sets,modelid,
*txt2imgparams,
debug = False
):
shared.state.begin()
from scripts.mergers.components import paramsnames
if debug: print(paramsnames)
#[None, 'Prompt', 'Negative prompt', 'Styles', 'Sampling steps', 'Sampling method', 'Batch count', 'Batch size', 'CFG Scale',
# 'Height', 'Width', 'Hires. fix', 'Denoising strength', 'Upscale by', 'Upscaler', 'Hires steps', 'Resize width to', 'Resize height to',
# 'Hires checkpoint', 'Hires sampling method', 'Hires prompt', 'Hires negative prompt', 'Override settings', 'Script', 'Refiner',
# 'Checkpoint', 'Switch at', 'Seed', 'Extra', 'Variation seed', 'Variation strength', 'Resize seed from width', 'Resize seed from height', '', 'Active', 'Active', 'X Types', 'X Values', 'Y Types', 'Y Values']
def g(wanted,wantedv=None):
if wanted in paramsnames:return txt2imgparams[paramsnames.index(wanted)]
elif wantedv and wantedv in paramsnames:return txt2imgparams[paramsnames.index(wantedv)]
else:return None
sampler_index = g("Sampling method")
if type(sampler_index) is str:
sampler_name = sampler_index
else:
sampler_name = sd_samplers.samplers[sampler_index].name
hr_sampler_index = g("Hires sampling method")
if hr_sampler_index is None: hr_sampler_index = 0
if type(sampler_index) is str:
hr_sampler_name = hr_sampler_index
else:
hr_sampler_name = "Use same sampler" if hr_sampler_index == 0 else sd_samplers.samplers[hr_sampler_index+1].name
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
outpath_grids=opts.outdir_grids or opts.outdir_txt2img_grids,
prompt=g("Prompt"),
styles=g("Styles"),
negative_prompt=g('Negative prompt'),
seed=g("Seed","Initial seed"),
subseed=g("Variation seed"),
subseed_strength=g("Variation strength"),
seed_resize_from_h=g("Resize seed from height"),
seed_resize_from_w=g("Resize seed from width"),
seed_enable_extras=g("Extra"),
sampler_name=sampler_name,
batch_size=g("Batch size"),
n_iter=g("Batch count"),
steps=g("Sampling steps"),
cfg_scale=g("CFG Scale"),
width=g("Width"),
height=g("Height"),
restore_faces=g("Restore faces","Face restore"),
tiling=g("Tiling"),
enable_hr=g("Hires. fix","Second pass"),
hr_scale=g("Upscale by"),
hr_upscaler=g("Upscaler"),
hr_second_pass_steps=g("Hires steps","Secondary steps"),
hr_resize_x=g("Resize width to"),
hr_resize_y=g("Resize height to"),
override_settings=create_override_settings_dict(g("Override settings")),
do_not_save_grid=True,
do_not_save_samples=True,
do_not_reload_embeddings=True,
)
p.hr_checkpoint_name=None if g("Hires checkpoint") == 'Use same checkpoint' else g("Hires checkpoint")
p.hr_sampler_name=None if hr_sampler_name == 'Use same sampler' else hr_sampler_name
if s_sampler is None: s_sampler = 0
if s_batch_size != 1 :p.batch_size = int(s_batch_size)
if s_prompt: p.prompt = s_prompt
if s_nprompt: p.negative_prompt = s_nprompt
if s_steps: p.steps = s_steps
if s_sampler: p.sampler_name = sampler_name
if s_cfg: p.cfg_scale = s_cfg
if s_seed: p.seed = s_seed
if s_w: p.width = s_w
if s_h: p.height = s_h
if not p.cfg_scale: p.cfg_scale = 7
p.scripts = scripts.scripts_txt2img
p.script_args = txt2imgparams[paramsnames.index("Override settings")+1:]
p.denoising_strength=g("Denoising strength") if p.enable_hr else None
p.hr_prompt=g("Hires prompt","Secondary Prompt")
p.hr_negative_prompt=g("Hires negative prompt","Secondary negative prompt")
if "Hires. fix" in genoptions:
p.enable_hr = True
if s_hrupscaler: p.hr_upscaler = s_hrupscaler
if s_hr2ndsteps:p.hr_second_pass_steps = s_hr2ndsteps
if s_denois_str:p.denoising_strength = s_denois_str
if s_hr_scale:p.hr_scale = s_hr_scale
if "Restore faces" in genoptions:
p.restore_faces = True
if "Tiling" in genoptions:
p.tiling = True
p.cached_c = [None,None]
p.cached_uc = [None,None]
p.cached_hr_c = [None, None]
p.cached_hr_uc = [None, None]
if type(p.prompt) == list:
p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
else:
p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]
if type(p.negative_prompt) == list:
p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
else:
p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]
if forge:
global orig_reload_model_weights
orig_reload_model_weights = sd_models.reload_model_weights
sd_models.reload_model_weights = reload_model_weights
processed:Processed = processing.process_images(p)
sd_models.reload_model_weights = orig_reload_model_weights
else:
processed:Processed = processing.process_images(p)
if "image" in id_sets:
for i, image in enumerate(processed.images):
processed.images[i] = draw_origin(image, str(modelid),p.width,p.height,p.width)
if "PNG info" in id_sets:mergeinfo = mergeinfo + " ID " + str(modelid)
infotext = create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds)
if infotext.count("Steps: ")>1:
infotext = infotext[:infotext.rindex("Steps")]
infotexts = infotext.split(",")
for i,x in enumerate(infotexts):
if "Model:"in x:
infotexts[i] = " Model: "+mergeinfo.replace(","," ")
infotext= ",".join(infotexts)
for i, image in enumerate(processed.images):
images.save_image(image, opts.outdir_txt2img_samples, "",p.seed, p.prompt,shared.opts.samples_format, p=p,info=infotext)
if s_batch_size > 1:
grid = images.image_grid(processed.images, p.batch_size)
processed.images.insert(0, grid)
images.save_image(grid, opts.outdir_txt2img_grids, "grid", p.seed, p.prompt, opts.grid_format, info=infotext, short_filename=not opts.grid_extended_filename, p=p, grid=True)
shared.state.end()
return processed.images,infotext,plaintext_to_html(processed.info), plaintext_to_html(processed.comments),p
################################################
##### Block Ids
def blocker(blocks,blockids):
blocks = blocks.split(" ")
output = ""
for w in blocks:
flagger=[False]*len(blockids)
changer = True
if "-" in w:
wt = [wt.strip() for wt in w.split('-')]
if blockids.index(wt[1]) > blockids.index(wt[0]):
flagger[blockids.index(wt[0]):blockids.index(wt[1])+1] = [changer]*(blockids.index(wt[1])-blockids.index(wt[0])+1)
else:
flagger[blockids.index(wt[1]):blockids.index(wt[0])+1] = [changer]*(blockids.index(wt[0])-blockids.index(wt[1])+1)
else:
output = output + " " + w if output else w
for i in range(len(blockids)):
if flagger[i]: output = output + " " + blockids[i] if output else blockids[i]
return output
def blockfromkey(key,isxl):
if not isxl:
re_inp = re.compile(r'\.input_blocks\.(\d+)\.') # 12
re_mid = re.compile(r'\.middle_block\.(\d+)\.') # 1
re_out = re.compile(r'\.output_blocks\.(\d+)\.') # 12
weight_index = -1
NUM_INPUT_BLOCKS = 12
NUM_MID_BLOCK = 1
NUM_OUTPUT_BLOCKS = 12
NUM_TOTAL_BLOCKS = NUM_INPUT_BLOCKS + NUM_MID_BLOCK + NUM_OUTPUT_BLOCKS
if 'time_embed' in key:
weight_index = -2 # before input blocks
elif '.out.' in key:
weight_index = NUM_TOTAL_BLOCKS - 1 # after output blocks
else:
m = re_inp.search(key)
if m:
inp_idx = int(m.groups()[0])
weight_index = inp_idx
else:
m = re_mid.search(key)
if m:
weight_index = NUM_INPUT_BLOCKS
else:
m = re_out.search(key)
if m:
out_idx = int(m.groups()[0])
weight_index = NUM_INPUT_BLOCKS + NUM_MID_BLOCK + out_idx
return BLOCKID[weight_index+1] ,BLOCKID[weight_index+1]
else:
if not ("weight" in key or "bias" in key):return "Not Merge","Not Merge"
if "label_emb" in key or "time_embed" in key: return "Not Merge","Not Merge"
if "conditioner.embedders" in key : return "BASE","BASE"
if "first_stage_model" in key : return "VAE","BASE"
if "model.diffusion_model" in key:
if "model.diffusion_model.out." in key: return "OUT8","OUT08"
block = re.findall(r'input|mid|output', key)
block = block[0].upper().replace("PUT","") if block else ""
nums = re.sub(r"\D", "", key)[:1 if "MID" in block else 2] + ("0" if "MID" in block else "")
add = re.findall(r"transformer_blocks\.(\d+)\.",key)[0] if "transformer" in key else ""
return block + nums + add, block + "0" + nums[0] if "MID" not in block else "M00"
return "Not Merge", "Not Merge"
################################################
##### Adjust
def fineman(fine,isxl):
if fine.find(",") != -1:
tmp = [t.strip() for t in fine.split(",")]
fines = [0.0]*8
for i,f in enumerate(tmp[0:8]):
try:
f = float(f)
fines[i] = f
except Exception:
pass
fine = fines
else:
return None
fine = [
1 - fine[0] * 0.01,
1+ fine[0] * 0.02,
1 - fine[1] * 0.01,
1+ fine[1] * 0.02,
1 - fine[2] * 0.01,
[fine[3]*0.02] + colorcalc(fine[4:8],isxl)
]
return fine
def colorcalc(cols,isxl):
colors = COLSXL if isxl else COLS
outs = [[y * cols[i] * 0.02 for y in x] for i,x in enumerate(colors)]
return [sum(x) for x in zip(*outs)]
COLS = [[-1,1/3,2/3],[1,1,0],[0,-1,-1],[1,0,1]]
COLSXL = [[0,0,1],[1,0,0],[-1,-1,0],[-1,1,0]]
def weighttoxl(weight):
weight = weight[:9] + weight[12:22] +[0]
return weight
FINETUNES = [
"model.diffusion_model.input_blocks.0.0.weight",
"model.diffusion_model.input_blocks.0.0.bias",
"model.diffusion_model.out.0.weight",
"model.diffusion_model.out.0.bias",
"model.diffusion_model.out.2.weight",
"model.diffusion_model.out.2.bias",
]
################################################
##### Include/Exclude
def excluder(block:str,inex:bool,ex_blocks:list,ex_elems:list, key:str):
if ex_blocks == [] and ex_elems == [""]:
return False
out = True if inex == "Include" else False
if block in ex_blocks:out = not out
if "Adjust" in ex_blocks and key in FINETUNES:out = not out
for ke in ex_elems:
if ke != "" and ke in key:out = not out
if "VAE" in ex_blocks and "first_stage_model"in key:out = not out
if "print" in ex_blocks and (out ^ (inex == "Include")):
print("Include" if inex else "Exclude",block,ex_blocks,ex_elems,key)
return out
################################################
##### Reset Broken CliP IDs
def resetclip(theta):
idkey = "cond_stage_model.transformer.text_model.embeddings.position_ids"
broken = []
if idkey in theta.keys():
correct = torch.Tensor([list(range(77))]).to(torch.int64)
current = theta[idkey].to(torch.int64)
broken = correct.ne(current)
broken = [i for i in range(77) if broken[0][i]]
if broken != []: print("Clip IDs broken and fixed: ",broken)
theta[idkey] = correct
################################################
##### cache
def cachedealer(start):
if start:
global orig_cache
orig_cache = shared.opts.sd_checkpoint_cache
shared.opts.sd_checkpoint_cache = 0
else:
shared.opts.sd_checkpoint_cache = orig_cache
def clearcache():
global modelcache
del modelcache
modelcache = {}
gc.collect()
devices.torch_gc()
def getcachelist():
output = []
for key in modelcache.keys():
if hasattr(key, "model_name"):
output.append(key.model_name)
return ",".join(output)
################################################
##### print
def printstart(model_a,model_b,model_c,base_alpha,base_beta,weights_a,weights_b,mode,useblocks,calcmode,deep,lucks,fine,inex,ex_blocks,ex_elems):
print(f" model A \t: {model_a}")
print(f" model B \t: {model_b}")
print(f" model C \t: {model_c}")
print(f" alpha,beta\t: {base_alpha,base_beta}")
print(f" weights_alpha\t: {weights_a}")
print(f" weights_beta\t: {weights_b}")
print(f" mode\t\t: {mode}")
print(f" MBW \t\t: {useblocks}")
print(f" CalcMode \t: {calcmode}")
print(f" Elemental \t: {deep}")
print(f" Weights Seed\t: {lucks}")
print(f" {inex} \t: {ex_blocks,ex_elems}")
print(f" Adjust \t: {fine}")
def caster(news,hear):
if hear: print(news)
def casterr(*args,hear=hear):
if hear:
names = {id(v): k for k, v in currentframe().f_back.f_locals.items()}
print('\n'.join([names.get(id(arg), '???') + ' = ' + repr(arg) for arg in args]))
################################################
##### forge
def unload_forge():
sd_models.model_data.sd_model = None
sd_models.model_data.loaded_sd_models = []
model_management.unload_all_models()
model_management.soft_empty_cache()
gc.collect()
def reload_model_weights():
pass
orig_reload_model_weights = None
|