File size: 71,515 Bytes
0163a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
import gc
import os
import os.path
import re
import json
import shutil
from tqdm import tqdm
import torch
from statistics import mean
import csv
import torch.nn as nn
import torch.nn.functional as F
from importlib import reload
from pprint import pprint
import gradio as gr
from modules import (script_callbacks, sd_models,sd_vae, shared)
from modules.scripts import basedir
from modules.sd_models import checkpoints_loaded, load_model,unload_model_weights
from modules.shared import opts
from modules.sd_samplers import samplers
from modules.ui import create_output_panel, create_refresh_button
import scripts.mergers.mergers
import scripts.mergers.pluslora
import scripts.mergers.xyplot
import scripts.mergers.components as components
from importlib import reload
reload(scripts.mergers.mergers)
reload(scripts.mergers.xyplot)
reload(scripts.mergers.pluslora)
import csv
import scripts.mergers.pluslora as pluslora
from scripts.mergers.mergers import (TYPESEG,EXCLUDE_CHOICES, freezemtime, rwmergelog, blockfromkey, clearcache, getcachelist)
from scripts.mergers.xyplot import freezetime, nulister
from scripts.mergers.model_util import filenamecutter, savemodel

path_root = basedir()
xyzpath = os.path.join(path_root,"xyzpresets.json")

CALCMODES  = ["normal", "cosineA", "cosineB","trainDifference","smoothAdd","smoothAdd MT","extract","tensor","tensor2","self","plus random"]

class ResizeHandleRow(gr.Row):
    """Same as gr.Row but fits inside gradio forms"""

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        self.elem_classes.append("resize-handle-row")

    def get_block_name(self):
        return "row"

from typing import Union
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
    self.network_current_names = ()
    self.network_weights_backup = None
    self.network_bias_backup = None
    

def fix_network_reset_cached_weight():
    try:
        import networks as net
        net.network_reset_cached_weight = network_reset_cached_weight
    except:
        pass

def on_ui_tabs():
    fix_network_reset_cached_weight()

    weights_presets=""
    userfilepath = os.path.join(path_root, "scripts","mbwpresets.txt")
    
    if os.path.isfile(userfilepath):
        try:
            with open(userfilepath) as f:
                weights_presets = f.read()
                filepath = userfilepath
        except OSError as e:
                pass
    else:
        filepath = os.path.join(path_root, "scripts","mbwpresets_master.txt")
        try:
            with open(filepath) as f:
                weights_presets = f.read()
                shutil.copyfile(filepath, userfilepath)
        except OSError as e:
                pass

    if "ALLR" not in weights_presets: weights_presets += ADDRAND

    with gr.Blocks() as supermergerui:
        with gr.Tab("Merge"):
            with ResizeHandleRow(equal_height=False):
                with gr.Column(variant="compact"):
                    gr.HTML(value="<p>Merge models and load it for generation</p>")

                    with gr.Row():
                        s_reverse= gr.Button(value="Load settings from:",elem_classes=["compact_button"],variant='primary')
                        mergeid = gr.Textbox(label="merged model ID (-1 for last)", elem_id="model_converter_custom_name",value = "-1")
                        mclearcache= gr.Button(value="Clear Cache",elem_classes=["compact_button"],variant='primary')

                    with gr.Row(variant="compact"):
                        model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Model A",interactive=True)
                        create_refresh_button(model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")

                        model_b = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Model B",interactive=True)
                        create_refresh_button(model_b, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")

                        model_c = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Model C",interactive=True)
                        create_refresh_button(model_c, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")

                    mode = gr.Radio(label = "Merge Mode",choices = ["Weight sum", "Add difference", "Triple sum", "sum Twice"], value="Weight sum", info="A*(1-alpha)+B*alpha")
                    calcmode = gr.Radio(label = "Calculation Mode",choices = CALCMODES, value = "normal") 
                    with gr.Row(variant="compact"):
                        with gr.Column(scale = 1):
                            useblocks =  gr.Checkbox(label="use MBW", info="use Merge Block Weights")
                        with gr.Column(scale = 3), gr.Group() as alpha_group:
                            with gr.Row():
                                base_alpha = gr.Slider(label="alpha", minimum=-1.0, maximum=2, step=0.001, value=0.5)
                                base_beta = gr.Slider(label="beta", minimum=-1.0, maximum=2, step=0.001, value=0.25, interactive=False)
                        #weights = gr.Textbox(label="weights,base alpha,IN00,IN02,...IN11,M00,OUT00,...,OUT11",lines=2,value="0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5")

                    with gr.Accordion("Options", open=False):
                        with gr.Row(variant="compact"):
                            save_sets = gr.CheckboxGroup(["use cuda","save model", "overwrite","safetensors","fp16","save metadata","copy config","prune","Reset CLIP ids","use old calc method","debug"], value=["safetensors"], show_label=False, label="save settings")
                        with gr.Row():
                            components.id_sets = gr.CheckboxGroup(["image", "PNG info"], label="save merged model ID to")
                            opt_value = gr.Slider(label="option(gamma) ", minimum=-1.0, maximum=20, step=0.1, value=0.3, interactive=True)
                        with gr.Row(variant="compact"):
                            with gr.Column(min_width = 50):
                                with gr.Row():
                                    custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="model_converter_custom_name")

                            with gr.Column():
                                with gr.Row():
                                    bake_in_vae = gr.Dropdown(choices=["None"] + list(sd_vae.vae_dict), value="None", label="Bake in VAE", elem_id="modelmerger_bake_in_vae")
                                    create_refresh_button(bake_in_vae, sd_vae.refresh_vae_list, lambda: {"choices": ["None"] + list(sd_vae.vae_dict)}, "modelmerger_refresh_bake_in_vae")

                        with gr.Row(variant="compact"):
                            savecurrent = gr.Button(elem_id="savecurrent", elem_classes=["compact_button"], value="Save current merge(fp16 only)")

                    with gr.Row():
                        components.merge = gr.Button(elem_id="model_merger_merge", elem_classes=["compact_button"], value="Merge!",variant='primary')
                        components.mergeandgen = gr.Button(elem_id="model_merger_merge", elem_classes=["compact_button"], value="Merge&Gen",variant='primary')
                        components.gen = gr.Button(elem_id="model_merger_merge", elem_classes=["compact_button"], value="Gen",variant='primary')
                        stopmerge = gr.Button(elem_id="stopmerge", elem_classes=["compact_button"], value="Stop")


                    with gr.Accordion("Merging Block Weights", open=False):
                        with gr.Row():
                            isxl = gr.Radio(label = "Block Type",choices = ["1.X or 2.X", "XL"], value = "1.X or 2.X", type="index")

                        with gr.Tab("Weights Setting"):
                            with gr.Group(), gr.Tabs():
                                with gr.Tab("Weights for alpha"):
                                    with gr.Row(variant="compact"):
                                        weights_a = gr.Textbox(label="BASE,IN00,IN02,...IN11,M00,OUT00,...,OUT11",value = "0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5", show_copy_button=True)
                                    with gr.Row(scale=2):
                                        setalpha = gr.Button(elem_id="copytogen", value="↑ Set alpha",variant='primary', scale=3)
                                        readalpha = gr.Button(elem_id="copytogen", value="↓ Read alpha",variant='primary', scale=3)
                                        setx = gr.Button(elem_id="copytogen", value="↑ Set X", min_width="80px", scale=1)
                                with gr.Tab("beta"):
                                    with gr.Row(variant="compact"):
                                        weights_b = gr.Textbox(label="BASE,IN00,IN02,...IN11,M00,OUT00,...,OUT11",value = "0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2", show_copy_button=True)
                                    with gr.Row(scale=2):
                                        setbeta = gr.Button(elem_id="copytogen", value="↑ Set beta",variant='primary', scale=3)
                                        readbeta = gr.Button(elem_id="copytogen", value="↓ Read beta",variant='primary', scale=3)
                                        sety = gr.Button(elem_id="copytogen", value="↑ Set Y", min_width="80px", scale=1)

                            with gr.Group(), gr.Tabs():
                                with gr.Tab("Preset"):
                                    with gr.Row():
                                        dd_preset_weight = gr.Dropdown(label="Select preset", choices=preset_name_list(weights_presets), interactive=True, elem_id="refresh_presets")
                                        preset_refresh = gr.Button(value='\U0001f504', elem_classes=["tool"])

                                with gr.Tab("Random Preset"):
                                    with gr.Row():
                                        dd_preset_weight_r = gr.Dropdown(label="Load Romdom preset", choices=preset_name_list(weights_presets,True), interactive=True, elem_id="refresh_presets")
                                        preset_refresh_r = gr.Button(value='\U0001f504', elem_classes=["tool"])
                                        luckab = gr.Radio(label = "for",choices = ["none", "alpha", "beta"], value = "none", type="value")

                                with gr.Tab("Helper"):
                                    with gr.Column():
                                        resetval = gr.Slider(label="Value", show_label=False, info="Value to set/add/mul", minimum=0, maximum=2, step=0.0001, value=0)
                                        resetopt = gr.Radio(label="Pre defined", show_label=False, choices = ["0", "0.25", "0.5", "0.75", "1"], value = "0", type="value")
                                    with gr.Column():
                                        resetblockopt = gr.CheckboxGroup(["BASE","INP*","MID","OUT*"], value=["INP*","OUT*"], label="Blocks", show_label=False, info="Select blocks to change")
                                    with gr.Column():
                                        with gr.Row():
                                            resetweight = gr.Button(elem_classes=["reset"], value="Set")
                                            addweight = gr.Button(elem_classes=["reset"], value="Add")
                                            mulweight = gr.Button(elem_classes=["reset"], value="Mul")
                                        with gr.Row():
                                            lower = gr.Slider(label="Slider Lower Limit", minimum=-2, maximum=3, step=0.1, value=0)
                                            upper = gr.Slider(label="Slider Upper Limit", minimum=-2, maximum=3, step=0.1, value=1)

                            with gr.Row():
                                with gr.Column(scale=1, min_width=100):
                                    gr.Slider(visible=False)
                                with gr.Column(scale=2, min_width=200):
                                    base = gr.Slider(label="Base", minimum=0, maximum=1, step=0.0001, value=0.5)
                                with gr.Column(scale=1, min_width=100):
                                    gr.Slider(visible=False)
                            with gr.Row():
                                with gr.Column(scale=2, min_width=200):
                                    in00 = gr.Slider(label="IN00", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in01 = gr.Slider(label="IN01", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in02 = gr.Slider(label="IN02", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in03 = gr.Slider(label="IN03", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in04 = gr.Slider(label="IN04", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in05 = gr.Slider(label="IN05", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in06 = gr.Slider(label="IN06", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in07 = gr.Slider(label="IN07", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in08 = gr.Slider(label="IN08", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in09 = gr.Slider(label="IN09", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in10 = gr.Slider(label="IN10", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    in11 = gr.Slider(label="IN11", minimum=0, maximum=1, step=0.0001, value=0.5)
                                with gr.Column(scale=2, min_width=200):
                                    ou11 = gr.Slider(label="OUT11", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou10 = gr.Slider(label="OUT10", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou09 = gr.Slider(label="OUT09", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou08 = gr.Slider(label="OUT08", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou07 = gr.Slider(label="OUT07", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou06 = gr.Slider(label="OUT06", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou05 = gr.Slider(label="OUT05", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou04 = gr.Slider(label="OUT04", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou03 = gr.Slider(label="OUT03", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou02 = gr.Slider(label="OUT02", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou01 = gr.Slider(label="OUT01", minimum=0, maximum=1, step=0.0001, value=0.5)
                                    ou00 = gr.Slider(label="OUT00", minimum=0, maximum=1, step=0.0001, value=0.5)
                            with gr.Row():
                                with gr.Column(scale=1, min_width=100):
                                    gr.Slider(visible=False)
                                with gr.Column(scale=2, min_width=200):
                                    mi00 = gr.Slider(label="M00", minimum=0, maximum=1, step=0.0001, value=0.5)
                                with gr.Column(scale=1, min_width=100):
                                    gr.Slider(visible=False)

                        with gr.Tab("Weights Presets"):
                            with gr.Row():
                                s_reloadtext = gr.Button(value="Reload Presets",variant='primary')
                                s_reloadtags = gr.Button(value="Reload Tags",variant='primary')
                                s_savetext = gr.Button(value="Save Presets",variant='primary')
                                s_openeditor = gr.Button(value="Open TextEditor",variant='primary')
                            weightstags= gr.Textbox(label="available",lines = 2,value=tagdicter(weights_presets),visible =True,interactive =True)
                            wpresets= gr.TextArea(label="",value=(weights_presets+ADDRAND),visible =True,interactive = True)

                    with gr.Accordion("XYZ Plot", open=False):
                        with gr.Row():
                            x_type = gr.Dropdown(label="X type", choices=[x for x in TYPESEG], value="alpha", type="index")
                            x_randseednum = gr.Number(value=3, label="number of -1", interactive=True, visible = True)
                        xgrid = gr.Textbox(label="X Values",lines=3,value="0.25,0.5,0.75")
                        y_type = gr.Dropdown(label="Y type", choices=[y for y in TYPESEG], value="none", type="index")
                        ygrid = gr.Textbox(label="Y Values (Disabled if blank)",lines=3,value="",visible =False)
                        z_type = gr.Dropdown(label="Z type", choices=[y for y in TYPESEG], value="none", type="index")
                        zgrid = gr.Textbox(label="Z Values (Disabled if blank)",lines=3,value="",visible =False)
                        esettings = gr.CheckboxGroup(label = "XYZ plot settings",choices=["swap XY","save model","save csv","save anime gif","not save grid","print change","0 stock"],type="value",interactive=True)

                        with gr.Row():
                            components.gengrid = gr.Button(elem_id="model_merger_merge", value="Run XYZ Plot",variant='primary')
                            stopgrid = gr.Button(elem_id="model_merger_merge", value="Stop XYZ Plot")
                            components.s_reserve1 = gr.Button(value="Reserve XYZ Plot",variant='primary')
                        
                        with gr.Accordion("XYZ presets",open = True):
                            with gr.Row():
                                xyzpresets = gr.Dropdown(label="Preset name",allow_custom_value=True,choices=get_xyzpreset_keylist(),scale=10)
                                refreshxyzpresets_b = gr.Button(value='\U0001f504', elem_classes=["tool"],scale=1)
                                savexyzpreset_overwrite = gr.CheckboxGroup(label = " ",choices=["Overwrite"],type="index",interactive=True,scale=1)
                            with gr.Row():
                                loadxyzpreset_b = gr.Button(value="Load preset",variant='primary')
                                savexyzpreset_b = gr.Button(value="Save current plot as preset",variant='primary')
                                deletexyzpreset_b = gr.Button(value="Delete preset",variant='primary')
                                openxyzpreset = gr.Button(value="Open XYZ Preset file")

                                openxyzpreset.click(fn=lambda:subprocess.Popen(['start', xyzpath], shell=True))
                                
                        with gr.Column(visible = False, variant="compact") as row_inputers:
                            with gr.Row(variant="compact"):
                                inputer = gr.Textbox(label="Selected", lines=1, value="", show_copy_button=True)
                            with gr.Row(variant="compact"):
                                addtox = gr.Button(value="↑ Add to X Values")
                                addtoy = gr.Button(value="↑ Add to Y Values")
                                addtoz = gr.Button(value="↑ Add to Z Values")
                        with gr.Row(visible = False) as row_blockids:
                            blockids = gr.CheckboxGroup(label = "block IDs",choices=BLOCKID[:-1],type="value",interactive=True)
                        with gr.Row(visible = False) as row_calcmode:
                            calcmodes = gr.CheckboxGroup(label = "calcmode",choices=CALCMODES,type="value",interactive=True)
                        with gr.Row(visible = False) as row_checkpoints:
                            checkpoints = gr.CheckboxGroup(label = "checkpoints",choices=[x.model_name for x in sd_models.checkpoints_list.values()],type="value",interactive=True)
                            create_refresh_button(checkpoints, sd_models.list_models, lambda: {"choices": [x.model_name for x in sd_models.checkpoints_list.values()]}, "refresh_checkpoint_xyz")
                        with gr.Row(visible = False) as row_blocks:
                            gr.HTML(value="<p>BASE,IN00,IN01,IN02,IN03,IN04,IN05,IN06,IN07,IN08,IN09,IN10,IN11<br>,M00,OUT00,OUT01,OUT02,OUT03,OUT04,OUT05,OUT06,OUT07,OUT08,OUT09,OUT10,OUT11,Adjust,VAE,print</p>")

                        with gr.Accordion("Reservation", open=False):
                            with gr.Row():
                                components.s_reserve = gr.Button(value="Reserve XY Plot",variant='primary')
                                s_reloadreserve = gr.Button(value="Reloat List",variant='primary')
                                components.s_startreserve = gr.Button(value="Start XY plot",variant='primary')
                                s_delreserve = gr.Button(value="Delete list(-1 for all)",variant='primary')
                                s_delnum = gr.Number(value=1, label="Delete num : ", interactive=True, visible = True,precision =0)
                            with gr.Row():
                                components.numaframe = gr.Dataframe(
                                    headers=["No.","status","xtype","xmenber","ytype","ymenber","ztype","zmenber","model A","model B","model C","alpha","beta","mode","use MBW","weights alpha","weights beta"],
                                    row_count=5,)

                    components.dtrue =  gr.Checkbox(value = True, visible = False)
                    components.dfalse =  gr.Checkbox(value = False,visible = False)
                    dummy_t =  gr.Textbox(value = "",visible = False)

                    with gr.Accordion("Elemental Merge",open = False):
                        with gr.Row():
                            components.esettings1 = gr.CheckboxGroup(label = "settings",choices=["print change"],type="value",interactive=True)
                        with gr.Row():
                            deep = gr.Textbox(label="Blocks:Element:Ratio,Blocks:Element:Ratio,...",lines=2,value="")

                    with gr.Accordion("Adjust", open=False) as acc_ad:
                        with gr.Row(variant="compact"):
                            finetune = gr.Textbox(label="Adjust", show_label=False, info="Adjust IN,OUT,OUT2,Contrast,Brightness,COL1,COL2,COL3", visible=True, value="", lines=1)
                            finetune_write = gr.Button(value="↑", elem_classes=["tool"])
                            finetune_read = gr.Button(value="↓", elem_classes=["tool"])
                            finetune_reset = gr.Button(value="\U0001f5d1\ufe0f", elem_classes=["tool"])
                        with gr.Row(variant="compact"):
                            with gr.Column(scale=1, min_width=100):
                                detail1 = gr.Slider(label="IN", minimum=-6, maximum=6, step=0.01, value=0, info="Detail/Noise")
                            with gr.Column(scale=1, min_width=100):
                                detail2 = gr.Slider(label="OUT", minimum=-6, maximum=6, step=0.01, value=0, info="Detail/Noise")
                            with gr.Column(scale=1, min_width=100):
                                detail3 = gr.Slider(label="OUT2", minimum=-6, maximum=6, step=0.01, value=0, info="Detail/Noise")
                        with gr.Row(variant="compact"):
                            with gr.Column(scale=1, min_width=100):
                                contrast = gr.Slider(label="Contrast", minimum=-10, maximum=10, step=0.01, value=0, info="Contrast/Detail")
                            with gr.Column(scale=1, min_width=100):
                                bri = gr.Slider(label="Brightness", minimum=-10, maximum=10, step=0.01, value=0, info="Dark(Minius)-Bright(Plus)")
                        with gr.Row(variant="compact"):
                            with gr.Column(scale=1, min_width=100):
                                col1 = gr.Slider(label="Cyan-Red", minimum=-10, maximum=10, step=0.01, value=0, info="Cyan(Minius)-Red(Plus)")
                            with gr.Column(scale=1, min_width=100):
                                col2 = gr.Slider(label="Magenta-Green", minimum=-10, maximum=10, step=0.01, value=0, info="Magenta(Minius)-Green(Plus)")
                            with gr.Column(scale=1, min_width=100):
                                col3 = gr.Slider(label="Yellow-Blue", minimum=-10, maximum=10, step=0.01, value=0, info="Yellow(Minius)-Blue(Plus)")
                        
                            finetune.change(fn=lambda x:gr.update(label = f"Adjust : {x}"if x != "" and x !="0,0,0,0,0,0,0,0" else "Adjust"),inputs=[finetune],outputs = [acc_ad])

                    with gr.Accordion("Let the Dice roll",open = False,visible=True):
                        with gr.Row():
                            gr.HTML(value="<p>R:0~1, U: -0.5~1.5</p>")
                        with gr.Row():
                            luckmode = gr.Radio(label = "Random Mode",choices = ["off", "R", "U", "X", "ER", "EU", "EX","custom"], value = "off") 
                        with gr.Row():
                            lucksets = gr.CheckboxGroup(label = "Settings",choices=["alpha","beta","save E-list"],value=["alpha"],type="value",interactive=True)
                        with gr.Row():
                            luckseed = gr.Number(minimum=-1, maximum=4294967295, step=1, label='Seed for Random Ratio', value=-1, elem_id="luckseed")
                            luckround = gr.Number(minimum=1, maximum=4294967295, step=1, label='Round', value=3, elem_id="luckround")
                            luckserial = gr.Number(minimum=1, maximum=4294967295, step=1, label='Num of challenge', value=1, elem_id="luckchallenge")
                        with gr.Row():  
                            luckcustom = gr.Textbox(label="custom",value = "U,0,0,0,0,0,0,0,0,0,0,0,0,R,R,R,R,R,R,R,R,R,R,R,R,R")
                        with gr.Row():  
                            lucklimits_u = gr.Textbox(label="Upper limit for X",value = "1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1")
                        with gr.Row(): 
                            lucklimits_l = gr.Textbox(label="Lower limit for X",value = "0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
                        components.rand_merge = gr.Button(elem_id="runrandmerge", value="Run Rand",variant='primary')

                    with gr.Accordion("Generation Parameters",open = False):
                        gr.HTML(value='If blank or set to 0, parameters in the "txt2img" tab are used.<br>batch size, restore face, hires fix settigns must be set here')
                        prompt = gr.Textbox(label="prompt",lines=1,value="")
                        neg_prompt = gr.Textbox(label="neg_prompt",lines=1,value="")
                        with gr.Row():
                            sampler = gr.Dropdown(label='Sampling method', elem_id=f"sampling", choices=[" ",*[x.name for x in samplers]], value=" ", type="index")
                            steps = gr.Slider(minimum=0.0, maximum=150, step=1, label='Steps',value=0, elem_id="Steps")
                            cfg = gr.Slider(minimum=0.0, maximum=30, step=0.5, label='CFG scale', value=0, elem_id="cfg")
                        with gr.Row():
                            width = gr.Slider(minimum=0, maximum=2048, step=8, label="Width", value=0, elem_id="txt2img_width")
                            height = gr.Slider(minimum=0, maximum=2048, step=8, label="Height", value=0, elem_id="txt2img_height")
                            seed = gr.Number(minimum=-1, maximum=4294967295, step=1, label='Seed', value=0, elem_id="seed")
                        batch_size = denois_str = gr.Slider(minimum=0, maximum=8, step=1, label='Batch size', value=1, elem_id="sm_txt2img_batch_size")
                        genoptions = gr.CheckboxGroup(label = "Gen Options",choices=["Restore faces", "Tiling", "Hires. fix"], visible = True,interactive=True,type="value")    
                        with gr.Row(elem_id="txt2img_hires_fix_row1", variant="compact"):
                            hrupscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode)
                            hr2ndsteps = gr.Slider(minimum=0, maximum=150, step=1, label='Hires steps', value=0, elem_id="txt2img_hires_steps")
                            denois_str = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength")
                            hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale")
                        with gr.Row():
                            setdefault = gr.Button(elem_id="setdefault", value="set to default",variant='primary')
                            resetdefault = gr.Button(elem_id="resetdefault", value="reset default",variant='primary')
                            resetcurrent = gr.Button(elem_id="resetcurrent", value="reset current",variant='primary')

                    with gr.Accordion("Include/Exclude", open=False) as acc_ex:
                        with gr.Row():
                            inex = gr.Radio(label="Mode", choices=["Off","Include","Exclude"], value="Off")
                        with gr.Row():
                            ex_blocks = gr.CheckboxGroup(choices=EXCLUDE_CHOICES + ["print"], visible = True,interactive=True,type="value")
                        with gr.Row():
                            ex_elems = gr.Textbox(label="Elements")
                        inex.change(fn=lambda i, x,y: gr.update(label =f"{i} : " + ",".join(x) +","+ y if x != [] or y != "" else "Include/Exclude"), inputs = [inex,ex_blocks,ex_elems],outputs = [acc_ex])
                        ex_blocks.change(fn=lambda i, x,y: gr.update(label =f"{i} : " + ",".join(x) +","+ y if x != [] or y != "" else "Include/Exclude"), inputs = [inex,ex_blocks,ex_elems],outputs = [acc_ex])
                        ex_elems.change(fn=lambda i, x,y: gr.update(label =f"{i} : " + ",".join(x) +","+ y if x != [] or y != "" else "Include/Exclude"),inputs=[inex,ex_blocks,ex_elems],outputs = [acc_ex])

                    with gr.Accordion("Advanced", open=False):
                        with gr.Row():
                            currentcache = gr.Textbox(label="Current Cache")
                            loadcachelist = gr.Button(elem_id="model_merger_merge", value="Reload Cache List",variant='primary')
                            unloadmodel = gr.Button(value="unload model",variant='primary')

                with gr.Column(variant="compact"):
                    components.currentmodel = gr.Textbox(label="Current Model",lines=1,value="")
                    components.submit_result = gr.Textbox(label="Message")
                    
                    output_panel = create_output_panel("txt2img", opts.outdir_txt2img_samples)
                    
                    mgallery = output_panel[0]  if isinstance(output_panel, tuple) else output_panel.gallery
                    mgeninfo = output_panel[1]   if isinstance(output_panel, tuple) else output_panel.generation_info
                    mhtmlinfo = output_panel[2]   if isinstance(output_panel, tuple) else output_panel.infotext
                    mhtmllog = output_panel[3]   if isinstance(output_panel, tuple) else output_panel.html_log
                    
        # main ui end 
    
        with gr.Tab("LoRA", elem_id="tab_lora"):
            pluslora.on_ui_tabs()
                    
        with gr.Tab("Analysis", elem_id="tab_analysis"):
            with gr.Tab("Models"):
                with gr.Row():
                    an_model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint A",interactive=True)
                    create_refresh_button(an_model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z") 
                    an_model_b = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint B",interactive=True)
                    create_refresh_button(an_model_b, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z") 
                with gr.Row():
                    an_mode  = gr.Radio(label = "Analysis Mode",choices = ["ASimilarity","Block","Element","Both"], value = "ASimilarity",type  = "value") 
                    an_calc  = gr.Radio(label = "Block method",choices = ["Mean","Min","attn2"], value = "Mean",type  = "value") 
                    an_include  = gr.CheckboxGroup(label = "Include",choices = ["Textencoder(BASE)","U-Net","VAE"], value = ["Textencoder(BASE)","U-Net"],type  = "value") 
                    an_settings = gr.CheckboxGroup(label = "Settings",choices=["save as txt", "save as csv"],type="value",interactive=True)
                with gr.Row():
                    run_analysis = gr.Button(value="Run Analysis",variant='primary')
                with gr.Row():
                    analysis_cosdif = gr.Dataframe(headers=["block","key","similarity[%]"],)
            with gr.Tab("Text Encoder"):
                    with gr.Row():
                        te_smd_loadkeys = gr.Button(value="Calculate Textencoer",variant='primary')
                        te_smd_searchkeys = gr.Button(value="Search Word(red,blue,girl,...)",variant='primary')
                        exclude = gr.Checkbox(label="exclude non numeric,alphabet,symbol word")
                    pickupword = gr.TextArea()
                    encoded = gr.Dataframe()

        run_analysis.click(fn=calccosinedif,inputs=[an_model_a,an_model_b,an_mode,an_settings,an_include,an_calc],outputs=[analysis_cosdif])    

        with gr.Tab("History", elem_id="tab_history"):
            
            with gr.Row():
                with gr.Column(scale = 2):
                    with gr.Row():
                        count = gr.Dropdown(choices=["20", "30", "40", "50", "100"], value="20", label="Load count")
                        load_history = gr.Button(value="Load history",variant='primary', elem_classes=["reset"])
                        reload_history = gr.Button(value="Reload history", elem_classes=["reset"])
                with gr.Column(scale = 2):
                    with gr.Row():
                        searchwrods = gr.Textbox(label="",lines=1,value="")
                        search = gr.Button(value="search", elem_classes=["reset"])
                        searchmode = gr.Radio(label = "Search Mode",choices = ["or","and"], value = "or",type  = "value") 
            with gr.Row():
                history = gr.Dataframe(
                        headers=["ID","Time","Name","Weights alpha","Weights beta","Model A","Model B","Model C","alpha","beta","Mode","use MBW","custum name","save setting","use ID"],
                )
    
        import lora

        with gr.Tab("Elements", elem_id="tab_deep"):
                with gr.Row():
                    smd_model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint",interactive=True)
                    create_refresh_button(smd_model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")    
                    smd_loadkeys = gr.Button(value="load keys",variant='primary')
                with gr.Row():
                    smd_lora = gr.Dropdown(list(lora.available_loras.keys()),elem_id="model_converter_model_name",label="LoRA",interactive=True)
                    create_refresh_button(smd_lora, lora.list_available_loras, lambda: {"choices": list(lora.available_loras.keys())},"refresh_checkpoint_Z")
                    smd_loadkeys_l = gr.Button(value="load keys",variant='primary')
                with gr.Row():
                    keys = gr.Dataframe(headers=["No.","block","key"],)

        with gr.Tab("Metadeta", elem_id="tab_metadata"):
                with gr.Row():
                    meta_model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="read metadata",interactive=True)
                    create_refresh_button(meta_model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")    
                    smd_loadmetadata = gr.Button(value="load keys",variant='primary')
                with gr.Row():
                    metadata = gr.TextArea()

        smd_loadmetadata.click(
            fn=loadmetadata,
            inputs=[meta_model_a],
            outputs=[metadata]
        )                 

        mclearcache.click(fn=clearcache)
        smd_loadkeys.click(fn=loadkeys,inputs=[smd_model_a,components.dfalse],outputs=[keys])
        smd_loadkeys_l.click(fn=loadkeys,inputs=[smd_lora,components.dtrue],outputs=[keys])

        te_smd_loadkeys.click(fn=encodetexts,inputs=[exclude],outputs=[encoded])
        te_smd_searchkeys.click(fn=pickupencode,inputs=[pickupword],outputs=[encoded])
        

        def unload():
            if shared.sd_model == None: return "already unloaded"
            load_model,unload_model_weights()
            return "model unloaded"

        unloadmodel.click(fn=unload,outputs=[components.submit_result])

        load_history.click(fn=load_historyf,inputs=[history,count],outputs=[history])
        reload_history.click(fn=load_historyf,inputs=[history,count,components.dtrue],outputs=[history])

        components.msettings=[weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,calcmode,useblocks,custom_name,save_sets,components.id_sets,wpresets,deep,finetune,bake_in_vae,opt_value,inex,ex_blocks,ex_elems]
        components.imagegal = [mgallery,mgeninfo,mhtmlinfo,mhtmllog]
        components.xysettings=[x_type,xgrid,y_type,ygrid,z_type,zgrid,esettings]
        components.genparams=[prompt,neg_prompt,steps,sampler,cfg,seed,width,height,batch_size]
        components.hiresfix = [genoptions,hrupscaler,hr2ndsteps,denois_str,hr_scale]
        components.lucks = [luckmode,lucksets,lucklimits_u,lucklimits_l,luckseed,luckserial,luckcustom,luckround]

        setdefault.click(fn = configdealer,
            inputs =[*components.genparams,*components.hiresfix[1:],components.dfalse],
        )

        resetdefault.click(fn = configdealer,
            inputs =[*components.genparams,*components.hiresfix[1:],components.dtrue],
        )

        resetcurrent.click(fn = lambda x : [gr.update(value = x) for x in RESETVALS] ,outputs =[*components.genparams,*components.hiresfix[1:]],)

        s_reverse.click(fn = reversparams,
            inputs =mergeid,
            outputs = [components.submit_result,*components.msettings[0:8],*components.msettings[9:13],deep,calcmode,luckseed,finetune,opt_value,inex,ex_blocks,ex_elems]
        )

        search.click(fn = searchhistory,inputs=[searchwrods,searchmode],outputs=[history])

        s_reloadreserve.click(fn=nulister,inputs=[components.dfalse],outputs=[components.numaframe])
        s_delreserve.click(fn=nulister,inputs=[s_delnum],outputs=[components.numaframe])
        loadcachelist.click(fn=getcachelist,inputs=[],outputs=[currentcache])
        addtox.click(fn=lambda x:gr.Textbox.update(value = x),inputs=[inputer],outputs=[xgrid])
        addtoy.click(fn=lambda x:gr.Textbox.update(value = x),inputs=[inputer],outputs=[ygrid])
        addtoz.click(fn=lambda x:gr.Textbox.update(value = x),inputs=[inputer],outputs=[zgrid])

        stopgrid.click(fn=freezetime)
        stopmerge.click(fn=freezemtime)

        checkpoints.change(fn=lambda x:",".join(x),inputs=[checkpoints],outputs=[inputer])
        blockids.change(fn=lambda x:" ".join(x),inputs=[blockids],outputs=[inputer])
        calcmodes.change(fn=lambda x:",".join(x),inputs=[calcmodes],outputs=[inputer])

        menbers = [base,in00,in01,in02,in03,in04,in05,in06,in07,in08,in09,in10,in11,mi00,ou00,ou01,ou02,ou03,ou04,ou05,ou06,ou07,ou08,ou09,ou10,ou11]
        menbers_plus = menbers + [resetval]

        lower.change(fn = lambda x: [gr.update(minimum = x) for i in range(len(menbers_plus))],inputs = [lower],outputs = menbers_plus)
        upper.change(fn = lambda x: [gr.update(maximum = x) for i in range(len(menbers_plus))],inputs = [upper],outputs = menbers_plus)

        setalpha.click(fn=slider2text,inputs=[*menbers,wpresets, dd_preset_weight,isxl],outputs=[weights_a])
        setbeta.click(fn=slider2text,inputs=[*menbers,wpresets, dd_preset_weight,isxl],outputs=[weights_b])
        setx.click(fn=add_to_seq,inputs=[xgrid,weights_a],outputs=[xgrid])     
        sety.click(fn=add_to_seq,inputs=[ygrid,weights_b],outputs=[ygrid])

        mode_info = {
            "Weight sum": "A*(1-alpha)+B*alpha",
            "Add difference": "A+(B-C)*alpha",
            "Triple sum": "A*(1-alpha-beta)+B*alpha+C*beta",
            "sum Twice": "(A*(1-alpha)+B*alpha)*(1-beta)+C*beta"
        }
        mode.change(fn=lambda mode,calcmode: [gr.update(info=mode_info[mode]), gr.update(interactive=True if mode in ["Triple sum", "sum Twice"] or calcmode in ["tensor", "tensor2"] else False)], inputs=[mode,calcmode], outputs=[mode, base_beta], show_progress=False)
        calcmode.change(fn=lambda calcmode: gr.update(interactive=True) if calcmode in ["tensor", "tensor2","extract"] else gr.update(), inputs=[calcmode], outputs=base_beta, show_progress=False)
        useblocks.change(fn=lambda mbw: gr.update(visible=False if mbw else True), inputs=[useblocks], outputs=[alpha_group])

        def save_current_merge(custom_name, save_settings):
            msg = savemodel(None,None,custom_name,save_settings)
            return gr.update(value=msg)

        def addblockweights(val, blockopt, *blocks):
            if val == "none":
                val = 0

            value = float(val)

            if "BASE" in blockopt:
                vals = [blocks[0] + value]
            else:
                vals = [blocks[0]]

            if "INP*" in blockopt:
                inp = [blocks[i + 1] + value for i in range(12)]
            else:
                inp = [blocks[i + 1] for i in range(12)]
            vals = vals + inp

            if "MID" in blockopt:
                mid = [blocks[13] + value]
            else:
                mid = [blocks[13]]
            vals = vals + mid

            if "OUT*" in blockopt:
                out = [blocks[i + 14] + value for i in range(12)]
            else:
                out = [blocks[i + 14] for i in range(12)]
            vals = vals + out

            return setblockweights(vals, blockopt)

        def mulblockweights(val, blockopt, *blocks):
            if val == "none":
                val = 0

            value = float(val)

            if "BASE" in blockopt:
                vals = [blocks[0] * value]
            else:
                vals = [blocks[0]]

            if "INP*" in blockopt:
                inp = [blocks[i + 1] * value for i in range(12)]
            else:
                inp = [blocks[i + 1] for i in range(12)]
            vals = vals + inp

            if "MID" in blockopt:
                mid = [blocks[13] * value]
            else:
                mid = [blocks[13]]
            vals = vals + mid

            if "OUT*" in blockopt:
                out = [blocks[i + 14] * value for i in range(12)]
            else:
                out = [blocks[i + 14] for i in range(12)]
            vals = vals + out

            return setblockweights(vals, blockopt)

        def resetblockweights(val, blockopt):
            if val == "none":
                val = 0
            vals = [float(val)] * 26
            return setblockweights(vals, blockopt)

        def setblockweights(vals, blockopt):
            if "BASE" in blockopt:
                ret = [gr.update(value = vals[0])]
            else:
                ret = [gr.update()]

            if "INP*" in blockopt:
                inp = [gr.update(value = vals[i + 1]) for i in range(12)]
            else:
                inp = [gr.update() for _ in range(12)]
            ret = ret + inp

            if "MID" in blockopt:
                mid = [gr.update(value = vals[13])]
            else:
                mid = [gr.update()]
            ret = ret + mid

            if "OUT*" in blockopt:
                out = [gr.update(value = vals[i + 14]) for i in range(12)]
            else:
                out = [gr.update() for _ in range(12)]
            ret = ret + out

            return ret

        def resetvalopt(opt):
            if opt == "none":
                value = 0.0
            else:
                value = float(opt)

            return gr.update(value = value)

        def finetune_update(finetune, detail1, detail2, detail3, contrast, bri, col1, col2, col3):
            arr = [detail1, detail2, detail3, contrast, bri, col1, col2, col3]
            tmp = ",".join(map(lambda x: str(int(x)) if x == 0.0 else str(x), arr))
            if finetune != tmp:
                return gr.update(value=tmp)
            return gr.update()

        def finetune_reader(finetune):
            tmp = [t.strip() for t in finetune.split(",")]
            ret = [gr.update()]*7
            for i, f in enumerate(tmp[0:7]):
                try:
                    f = float(f)
                    ret[i] = gr.update(value=f)
                except:
                    pass
            return ret

        # update finetune
        finetunes = [detail1, detail2, detail3, contrast, bri, col1, col2, col3]
        finetune_reset.click(fn=lambda: [gr.update(value="")]+[gr.update(value=0.0)]*8, inputs=[], outputs=[finetune, *finetunes])
        finetune_read.click(fn=finetune_reader, inputs=[finetune], outputs=[*finetunes])
        finetune_write.click(fn=finetune_update, inputs=[finetune, *finetunes], outputs=[finetune])
        detail1.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
        detail2.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
        detail3.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
        contrast.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
        bri.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
        col1.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
        col2.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
        col3.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)

        savecurrent.click(fn=save_current_merge, inputs=[custom_name, save_sets], outputs=[components.submit_result])

        resetopt.change(fn=resetvalopt,inputs=[resetopt],outputs=[resetval])
        resetweight.click(fn=resetblockweights,inputs=[resetval,resetblockopt],outputs=menbers)
        addweight.click(fn=addblockweights,inputs=[resetval,resetblockopt,*menbers],outputs=menbers)
        mulweight.click(fn=mulblockweights,inputs=[resetval,resetblockopt,*menbers],outputs=menbers)

        readalpha.click(fn=text2slider,inputs=[weights_a,isxl],outputs=menbers)
        readbeta.click(fn=text2slider,inputs=[weights_b,isxl],outputs=menbers)

        dd_preset_weight.change(fn=on_change_dd_preset_weight,inputs=[wpresets, dd_preset_weight],outputs=menbers)
        dd_preset_weight_r.change(fn=on_change_dd_preset_weight_r,inputs=[wpresets, dd_preset_weight_r,luckab],outputs=[weights_a,weights_b])

        def refresh_presets(presets,rand,ab = ""):
            choices = preset_name_list(presets,rand)
            return gr.update(choices = choices)

        preset_refresh.click(fn=refresh_presets,inputs=[wpresets,components.dfalse],outputs=[dd_preset_weight])
        preset_refresh_r.click(fn=refresh_presets,inputs=[wpresets,components.dtrue],outputs=[weights_a,weights_b])

        def changexl(isxl):
            out = [True] * 26
            if isxl:
                for i,id in enumerate(BLOCKID[:-1]):
                    if id not in BLOCKIDXLL[:-1]:
                        out[i] = False
            return [gr.update(visible = x) for x in out]

        isxl.change(fn=changexl,inputs=[isxl], outputs=menbers)

        x_type.change(fn=showxy,inputs=[x_type,y_type,z_type], outputs=[row_blockids,row_checkpoints,row_inputers,ygrid,zgrid,row_blocks,row_calcmode])
        y_type.change(fn=showxy,inputs=[x_type,y_type,z_type], outputs=[row_blockids,row_checkpoints,row_inputers,ygrid,zgrid,row_blocks,row_calcmode])
        z_type.change(fn=showxy,inputs=[x_type,y_type,z_type], outputs=[row_blockids,row_checkpoints,row_inputers,ygrid,zgrid,row_blocks,row_calcmode])
        x_randseednum.change(fn=makerand,inputs=[x_randseednum],outputs=[xgrid])

        import subprocess
        def openeditors():
            subprocess.Popen(['start', filepath], shell=True)

        def reloadpresets():
            try:
                with open(filepath) as f:
                    weights_presets = f.read()
                    choices = preset_name_list(weights_presets)
                    return [weights_presets, gr.update(choices = choices)]
            except OSError as e:
                pass

        def savepresets(text):
            with open(filepath,mode = 'w') as f:
                f.write(text)

        s_reloadtext.click(fn=reloadpresets,inputs=[],outputs=[wpresets, dd_preset_weight])
        s_reloadtags.click(fn=tagdicter,inputs=[wpresets],outputs=[weightstags])
        s_savetext.click(fn=savepresets,inputs=[wpresets],outputs=[])
        s_openeditor.click(fn=openeditors,inputs=[],outputs=[])

        def savexyzpreset_f(xtype, xvals, ytype, yvals, ztype, zvals, name, mode_overwrite):
            new_data = {"xtype": TYPESEG[xtype], "xvalues": xvals,
                                "ytype": TYPESEG[ytype], "yvalues": yvals,
                                "ztype": TYPESEG[ztype], "zvalues": zvals
                                }
            data = get_xyzpreset_data()

            if mode_overwrite:
                data[name] = new_data
            else:
                if name in data:
                    gr.Info(f"Supermerger: Preset {name} already exists.")
                else:
                    data[name] = new_data

            with open(xyzpath, 'w') as file:
                json.dump(data, file, indent=4)
            
            data_keys = list(data.keys())
            return gr.update(choices = sorted(data_keys))
        
        def deletexyzpreset_f(name):
            data = get_xyzpreset_data()

            try: del data[name] 
            except KeyError: gr.Info(f"Supermerger: Preset {name} not found.")

            with open(xyzpath, 'w') as file:
                json.dump(data, file, indent=4)
                
            keys_list = list(data.keys())
            return gr.update(choices = sorted(keys_list))

        def loadxyzpreset_f(name):
                data = get_xyzpreset_data()

                preset_data = data.get(name)
                if not preset_data:
                    gr.Info(f"Supermerger: Preset {name} not found.")
                    return [gr.update(value = x) for x in ["alpha","","none","","none",""]]

                sets = [("xtype"),"xvalues","ytype","yvalues","ztype","zvalues"]

                return [gr.update(value = preset_data.get(x)) for x in sets]
        
        def refreshxyzpresets_f(): 
            return gr.update(choices = get_xyzpreset_keylist())
        
        savexyzpreset_b.click(fn=savexyzpreset_f,inputs=[x_type, xgrid, y_type, ygrid, z_type, zgrid,xyzpresets,savexyzpreset_overwrite],outputs=[xyzpresets])
        loadxyzpreset_b.click(fn=loadxyzpreset_f,inputs=[xyzpresets],outputs=[x_type, xgrid, y_type, ygrid, z_type, zgrid])
        deletexyzpreset_b.click(fn=deletexyzpreset_f,inputs=[xyzpresets],outputs=[xyzpresets])
        refreshxyzpresets_b.click(fn=refreshxyzpresets_f,outputs=[xyzpresets])

    return (supermergerui, "SuperMerger", "supermerger"),

msearch = []
mlist=[]

def loadmetadata(model):
    import json
    checkpoint_info = sd_models.get_closet_checkpoint_match(model)
    if ".safetensors" not in checkpoint_info.filename: return "no metadata(not safetensors)"
    sdict = sd_models.read_metadata_from_safetensors(checkpoint_info.filename)
    if sdict == {}: return "no metadata"
    return json.dumps(sdict,indent=4)

def load_historyf(data, count=20, reload=False):
    filepath = os.path.join(path_root,"mergehistory.csv")
    global mlist,msearch
    try:
        with  open(filepath, 'r') as f:
            reader = csv.reader(f)
            next(reader) # skip header
            row_count = sum(1 for row in reader)
            count = int(count)

            nth = None
            if not reload and data is not None and len(data) > 1:
                old = data.loc[len(data)-1, 'ID']
                if old != '':
                    nth = int(old) - count - 1

            if nth is None:
                msearch = []
                mlist = []
                nth = row_count - count

            f.seek(0)
            next(reader)
            nlist = [raw for n,raw in enumerate(reader, start=1) if n > nth and n <= (nth + count)]
            nlist.reverse()
            for m in nlist:
                msearch.append(" ".join(m))
            maxlen = len(nlist[-1][0])
            for i,m in enumerate(nlist):
                nlist[i][0] = nlist[i][0].zfill(maxlen)
            mlist += nlist
            return mlist
    except:
        return [["no data","",""],]

def searchhistory(words,searchmode):
    outs =[]
    ando = "and" in searchmode
    words = words.split(" ") if " " in words else [words]
    for i, m in  enumerate(msearch):
        hit = ando
        for w in words:
            if ando:
                if w not in m:hit = False
            else:
                if w in m:hit = True
        if hit :outs.append(mlist[i])

    if outs == []:return [["no result","",""],]
    return outs

#msettings=[0 weights_a,1 weights_b,2 model_a,3 model_b,4 model_c,5 base_alpha,6 base_beta,7 mode,8 useblocks,9 custom_name,10 save_sets,11 id_sets,12 wpresets]
#13  deep,14 calcmode,15 luckseed 16:opt_value 17 include/exclude 18: exclude_blocks, 19: exclude_elements
MSETSNUM = 20

def reversparams(id):
    def selectfromhash(hash):
        for model in sd_models.checkpoint_tiles():
            if hash in model:
                return model
        return ""
    try:
        idsets = rwmergelog(id = id)
    except:
        return [gr.update(value = "ERROR: history file could not open"),*[gr.update() for x in range(MSETSNUM)]]
    if type(idsets) == str:
        print("ERROR")
        return [gr.update(value = idsets),*[gr.update() for x in range(MSETSNUM)]]
    if idsets[0] == "ID":return  [gr.update(value ="ERROR: no history"),*[gr.update() for x in range(MSETSNUM)]]
    mgs = idsets[3:]
    if mgs[0] == "":mgs[0] = "0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5"
    if mgs[1] == "":mgs[1] = "0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2"
    def cutter(text):
        text = text.replace("[","").replace("]","").replace("'", "") 
        return [x.strip() for x in text.split(",") if x != ""]
    mgs[2] = selectfromhash(mgs[2]) if len(mgs[2]) > 5 else ""
    mgs[3] = selectfromhash(mgs[3]) if len(mgs[3]) > 5 else ""
    mgs[4] = selectfromhash(mgs[4]) if len(mgs[4]) > 5 else ""
    mgs[7] = mgs[7].split(":")[0] # get mode name only
    mgs[8] = mgs[8] =="True"
    mgs[10] = cutter(mgs[10])
    mgs[11] = cutter(mgs[11])
    while len(mgs) < MSETSNUM:
        mgs.append("")
    mgs[13] = "normal" if mgs[13] == "" else mgs[13] 
    mgs[14] = -1 if mgs[14] == "" else mgs[14]
    mgs[16] = 0.3 if mgs[16] == "" else float(mgs[16]) 
    mgs[17] = "Off" if mgs[17] == "" else mgs[17]
    mgs[18] = cutter(mgs[18])
    mgs[18] = [x for x in mgs[18] if x in EXCLUDE_CHOICES + ["print"]]
    return [gr.update(value = "setting loaded") ,*[gr.update(value = x) for x in mgs[0:MSETSNUM]]]

def add_to_seq(seq,maker):
    return gr.Textbox.update(value = maker if seq=="" else seq+"\r\n"+maker)

def load_cachelist():
    text = ""
    for x in checkpoints_loaded.keys():
        text = text +"\r\n"+ x.model_name
    return text.replace("\r\n","",1)

def makerand(num):
    text = ""
    for x in range(int(num)):
        text = text +"-1,"
    text = text[:-1]
    return text

#0 row_blockids, 1 row_checkpoints, 2 row_inputers,3 ygrid, 4 zgrid, 5 row_blocks, 6 row_calcmode
def showxy(x,y,z):
    flags =[False]*7
    t = TYPESEG
    txy = t[x] + t[y] + t[z]
    if "model" in txy : flags[1] = flags[2] = True
    if "pinpoint" in txy : flags[0] = flags[2] = True
    if "clude" in txy in txy : flags[5] = True
    if "calcmode" in txy : flags[6] = True
    if not "none" in t[y] : flags[3] = flags[2] = True
    if not "none" in t[z] : flags[4] = flags[2] = True
    return [gr.update(visible = x) for x in flags]

def get_xyzpreset_data():
    try:
        with open(xyzpath, 'r') as file:
            return json.load(file)
    except FileNotFoundError:
        with open(xyzpath, 'w') as file:
            json.dump({}, file, indent=4)
        return {}
    
def get_xyzpreset_keylist():
    keys_list = list(get_xyzpreset_data())
    return sorted(keys_list)

def text2slider(text, isxl=False):
    vals = [t.strip() for t in text.split(",")]
    vals = [0 if v in "RUX" else v for v in vals]

    if isxl:
        j = 0
        ret = []
        for i, v in enumerate(ISXLBLOCK):
            if v:
                ret.append(gr.update(value = float(vals[j])))
                j += 1
            else:
                ret.append(gr.update())
        return ret

    return [gr.update(value = float(v)) for v in vals]

def slider2text(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,presets, preset, isxl):
    az = find_preset_by_name(presets, preset)
    if az is not None:
        if any(element in az for element in RANCHA):return az
    numbers = [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z]
    if isxl:
        newnums = []
        for i,id in enumerate(BLOCKID[:-1]):
            if id in BLOCKIDXLL[:-1]:
                newnums.append(numbers[i])
        numbers = newnums
    numbers = [str(x) for x in numbers]
    return gr.update(value = ",".join(numbers) )

def on_change_dd_preset_weight(presets, preset):
    weights = find_preset_by_name(presets, preset)
    if weights is not None:
        return text2slider(weights)

def on_change_dd_preset_weight_r(presets, preset, ab):
    weights = find_preset_by_name(presets, preset)
    if weights is not None:
        if "none" in ab : return gr.update(),gr.update()
        if "alpha" in ab : return gr.update(value = weights),gr.update()
        if "beta" in ab : return gr.update(),gr.update(value = weights)
    return gr.update(),gr.update()

RANCHA = ["R","U","X"]

def tagdicter(presets, rand = False):
    presets=presets.splitlines()
    wdict={}
    for l in presets:
        w=""
        if ":" in l :
            key = l.split(":",1)[0]
            w = l.split(":",1)[1]
        if "\t" in l:
            key = l.split("\t",1)[0]
            w = l.split("\t",1)[1]
        if len([w for w in w.split(",")]) == 26:
            if rand and not any(element in w for element in RANCHA) : continue
            wdict[key.strip()]=w
    return ",".join(list(wdict.keys()))

def preset_name_list(presets, rand = False):
    return tagdicter(presets, rand).split(",")

def find_preset_by_name(presets, preset):
    presets = presets.splitlines()
    for l in presets:
        if ":" in l:
            key = l.split(":",1)[0]
            w = l.split(":",1)[1]
        elif "\t" in l:
            key = l.split("\t",1)[0]
            w = l.split("\t",1)[1]
        else:
            continue
        if key == preset and len([w for w in w.split(",")]) == 26:
            return w

    return None

BLOCKID=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11","Not Merge"]
BLOCKIDXL=['BASE', 'IN0', 'IN1', 'IN2', 'IN3', 'IN4', 'IN5', 'IN6', 'IN7', 'IN8', 'M', 'OUT0', 'OUT1', 'OUT2', 'OUT3', 'OUT4', 'OUT5', 'OUT6', 'OUT7', 'OUT8', 'VAE']
BLOCKIDXLL=['BASE', 'IN00', 'IN01', 'IN02', 'IN03', 'IN04', 'IN05', 'IN06', 'IN07', 'IN08', 'M00', 'OUT00', 'OUT01', 'OUT02', 'OUT03', 'OUT04', 'OUT05', 'OUT06', 'OUT07', 'OUT08', 'VAE']
ISXLBLOCK=[True,  True,  True,  True,  True,  True,  True,  True,  True,  True, False, False, False, True,   True,   True,   True,   True,   True,   True,   True,   True,   True,  False,  False,  False]

def modeltype(sd):
    if "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.weight" in sd.keys():
        modeltype = "XL"
    else:
        modeltype = "1.X or 2.X"
    return modeltype

def loadkeys(model_a, lora):
    if lora:
        import lora
        sd = sd_models.read_state_dict(lora.available_loras[model_a].filename,"cpu")
    else:
        sd = loadmodel(model_a)
    keys = []
    mtype = modeltype(sd)
    if lora:
        for i, key in enumerate(sd.keys()):
            keys.append([i,"LoRA",key,sd[key].shape])
    else:    
        for i, key in enumerate(sd.keys()):
            keys.append([i,blockfromkey(key,mtype),key,sd[key].shape])

    return keys

def loadmodel(model):
    checkpoint_info = sd_models.get_closet_checkpoint_match(model)
    sd = sd_models.read_state_dict(checkpoint_info.filename,"cpu")
    return sd

ADDRAND = "\n\
ALL_R	R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R\n\
ALL_U	U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U\n\
ALL_X	X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X\n\
"

def calccosinedif(model_a,model_b,mode,settings,include,calc):
    inc = " ".join(include)
    settings = " ".join(settings)
    a, b = loadmodel(model_a), loadmodel(model_b)
    name = filenamecutter(model_a) + "-" + filenamecutter(model_b)
    cosine_similarities = []
    blocksim = {}
    blockvals = []
    attn2 = {}
    isxl = "XL" == modeltype(a)
    blockids = BLOCKIDXLL if isxl else BLOCKID
    for bl in blockids:
        blocksim[bl] = []
    blocksim["VAE"] = []

    if "ASim" in mode:
        result = asimilarity(a,b,isxl)
        if len(settings) > 1: savecalc(result,name,settings,True,"Asim")
        del a ,b
        gc.collect()
        return result
    else:
        for key in tqdm(a.keys(), desc="Calculating cosine similarity"):
            block = None
            if blockfromkey(key,isxl) == "Not Merge": continue
            if "model_ema" in key: continue
            if "model" not in key:continue
            if "first_stage_model" in key and not ("VAE" in inc):
                continue
            elif "first_stage_model" in key and "VAE" in inc:
                block = "VAE"
            if "diffusion_model" in key and not ("U-Net" in inc): continue
            if "encoder" in key and not ("encoder" in inc): continue
            if key in b and a[key].size() == b[key].size():
                a_flat = a[key].view(-1).to(torch.float32)
                b_flat = b[key].view(-1).to(torch.float32)
                simab = torch.nn.functional.cosine_similarity(a_flat.unsqueeze(0), b_flat.unsqueeze(0))
                if block is None: block,blocks26 = blockfromkey(key,isxl)
                if block =="Not Merge" :continue
                cosine_similarities.append([block, key, round(simab.item()*100,3)])
                blocksim[blocks26].append(round(simab.item()*100,3))
                if "attn2.to_out.0.weight" in key: attn2[block] = round(simab.item()*100,3)

        for bl in blockids:
            val = None
            if bl == "Not Merge": continue
            if bl not in blocksim.keys():continue
            if blocksim[bl] == []: continue
            if "Mean" in calc:
                val = mean(blocksim[bl])
            elif "Min" in calc:
                val = min(blocksim[bl])
            else:
                if bl in attn2.keys():val = attn2[bl]
            if val:blockvals.append([bl,"",round(val,3)])
            if mode != "Element": cosine_similarities.insert(0,[bl,"",round(mean(blocksim[bl]),3)])

        if mode == "Block":
            if len(settings) > 1: savecalc(blockvals,name,settings,True,"Blocks")
            del a ,b
            gc.collect()
            return blockvals
        else:
            if len(settings) > 1: savecalc(cosine_similarities,name,settings,False,"Elements",)
            del a ,b
            gc.collect()
            return cosine_similarities

def savecalc(data,name,settings,blocks,add):
    name = name + "_" + add
    csvpath = os.path.join(path_root,f"{name}.csv")
    txtpath = os.path.join(path_root,f"{name}.txt")

    txt = ""
    for row in data:
        row = [str(r) for r in row]
        txt = txt + ",".join(row)+"\n"
        if blocks: txt = txt.replace(",,",",")

    if "txt" in settings:
        with  open(txtpath, 'w+') as f:
            f.writelines(txt)
            print("file saved to ",txtpath)
    if "csv" in settings:
        with  open(csvpath, 'w+') as f:
            f.writelines(txt)
            print("file saved to ",csvpath)

#code from https://huggingface.co/JosephusCheung/ASimilarityCalculatior

def cal_cross_attn(to_q, to_k, to_v, rand_input):
    hidden_dim, embed_dim = to_q.shape
    attn_to_q = nn.Linear(hidden_dim, embed_dim, bias=False)
    attn_to_k = nn.Linear(hidden_dim, embed_dim, bias=False)
    attn_to_v = nn.Linear(hidden_dim, embed_dim, bias=False)
    attn_to_q.load_state_dict({"weight": to_q})
    attn_to_k.load_state_dict({"weight": to_k})
    attn_to_v.load_state_dict({"weight": to_v})
    
    return torch.einsum(
        "ik, jk -> ik", 
        F.softmax(torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)), dim=-1),
        attn_to_v(rand_input)
    )
       
def eval(model, n, input, block):
    qk = f"model.diffusion_model.{block}_block{n}.1.transformer_blocks.0.attn1.to_q.weight"
    uk = f"model.diffusion_model.{block}_block{n}.1.transformer_blocks.0.attn1.to_k.weight"
    vk = f"model.diffusion_model.{block}_block{n}.1.transformer_blocks.0.attn1.to_v.weight"
    atoq, atok, atov = model[qk], model[uk], model[vk]

    attn = cal_cross_attn(atoq, atok, atov, input)
    return attn

ATTN1BLOCKS = [[1,"input"],[2,"input"],[4,"input"],[5,"input"],[7,"input"],[8,"input"],["","middle"],
[3,"output"],[4,"output"],[5,"output"],[6,"output"],[7,"output"],[8,"output"],[9,"output"],[10,"output"],[11,"output"]]

def asimilarity(model_a,model_b,mtype):
    torch.manual_seed(2244096)
    sims = []
  
    for nblock in  tqdm(ATTN1BLOCKS, desc="Calculating cosine similarity"):
        n,block = nblock[0],nblock[1]
        if n != "": n = f"s.{n}"
        key = f"model.diffusion_model.{block}_block{n}.1.transformer_blocks.0.attn1.to_q.weight"

        hidden_dim, embed_dim = model_a[key].shape
        rand_input = torch.randn([embed_dim, hidden_dim])

        attn_a = eval(model_a, n, rand_input, block)
        attn_b = eval(model_b, n, rand_input, block)

        sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
        sims.append([blockfromkey(key,mtype),"",round(sim.item() * 100,3)])
        
    return sims

CONFIGS = ["prompt","neg_prompt","Steps","Sampling method","CFG scale","Seed","Width","Height","Batch size","Upscaler","Hires steps","Denoising strength","Upscale by"]
RESETVALS = ["","",0," ",0,0,0,0,1,"Latent",0,0.7,2]

def configdealer(prompt,neg_prompt,steps,sampler,cfg,seed,width,height,batch_size,
                        hrupscaler,hr2ndsteps,denois_str,hr_scale,reset):

    data = [prompt,neg_prompt,steps,sampler,cfg,seed,width,height,batch_size,
                        hrupscaler,hr2ndsteps,denois_str,hr_scale]

    current_directory = os.getcwd()
    jsonpath = os.path.join(current_directory,"ui-config.json")
    print(jsonpath)

    with open(jsonpath, 'r') as file:
        json_data = json.load(file)

    for name,men,default in zip(CONFIGS,data,RESETVALS):
        key = f"supermerger/{name}/value"
        json_data[key] = default if reset else men

    with open(jsonpath, 'w') as file:
        json.dump(json_data, file, indent=4)

sorted_output = []

def encodetexts(exclude):
    isxl = hasattr(shared.sd_model,"conditioner")
    model = shared.sd_model.conditioner.embedders[0] if isxl else shared.sd_model.cond_stage_model
    encoder = model.encode_with_transformers
    tokenizer = model.tokenizer
    vocab = tokenizer.get_vocab()
    byte_decoder = tokenizer.byte_decoder

    batch = 500

    b_texts = [list(vocab.items())[i:i + batch] for i in range(0, len(vocab), batch)]

    output = []

    for texts in tqdm(b_texts):    
        batch = []
        words = []
        for word, idx in texts:
            tokens = [model.id_start, idx, model.id_end] + [model.id_end] * 74
            batch.append(tokens)
            words.append((idx, word))
        
        embedding = encoder(torch.IntTensor(batch).to("cuda"))[:,1,:] # (bs,768)
        embedding = embedding.to('cuda')
        emb_norms = torch.linalg.vector_norm(embedding, dim=-1) # (bs,)
        
        for i, (word, token) in enumerate(texts):
            try:
                word = bytearray([byte_decoder[x] for x in word]).decode("utf-8")
            except UnicodeDecodeError:
                pass
            if exclude:
                if has_alphanumeric(word) : output.append([word,token,emb_norms[i].item()])
            else:
                output.append([word,token,emb_norms[i].item()])

    output = sorted(output, key=lambda x: x[2], reverse=True)
    for i in range(len(output)):
        output[i].insert(0,i)

    global sorted_output
    sorted_output = output

    return output[:1000]

def pickupencode(texts):
    wordlist = [x[1] for x in sorted_output]
    texts = texts.split(",")
    output = []
    for text in texts:
        if text in wordlist:
            output.append(sorted_output[wordlist.index(text)])
        if text+"</w>" in wordlist:
            output.append(sorted_output[wordlist.index(text+"</w>")])
    return output

def has_alphanumeric(text):
    pattern = re.compile(r'[a-zA-Z0-9!@#$%^&*()_+{}\[\]:;"\'<>,.?/\|\\]')
    return bool(pattern.search(text.replace("</w>","")))

if __package__ == "supermerger":
    script_callbacks.on_ui_tabs(on_ui_tabs)