File size: 71,515 Bytes
0163a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 |
import gc
import os
import os.path
import re
import json
import shutil
from tqdm import tqdm
import torch
from statistics import mean
import csv
import torch.nn as nn
import torch.nn.functional as F
from importlib import reload
from pprint import pprint
import gradio as gr
from modules import (script_callbacks, sd_models,sd_vae, shared)
from modules.scripts import basedir
from modules.sd_models import checkpoints_loaded, load_model,unload_model_weights
from modules.shared import opts
from modules.sd_samplers import samplers
from modules.ui import create_output_panel, create_refresh_button
import scripts.mergers.mergers
import scripts.mergers.pluslora
import scripts.mergers.xyplot
import scripts.mergers.components as components
from importlib import reload
reload(scripts.mergers.mergers)
reload(scripts.mergers.xyplot)
reload(scripts.mergers.pluslora)
import csv
import scripts.mergers.pluslora as pluslora
from scripts.mergers.mergers import (TYPESEG,EXCLUDE_CHOICES, freezemtime, rwmergelog, blockfromkey, clearcache, getcachelist)
from scripts.mergers.xyplot import freezetime, nulister
from scripts.mergers.model_util import filenamecutter, savemodel
path_root = basedir()
xyzpath = os.path.join(path_root,"xyzpresets.json")
CALCMODES = ["normal", "cosineA", "cosineB","trainDifference","smoothAdd","smoothAdd MT","extract","tensor","tensor2","self","plus random"]
class ResizeHandleRow(gr.Row):
"""Same as gr.Row but fits inside gradio forms"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.elem_classes.append("resize-handle-row")
def get_block_name(self):
return "row"
from typing import Union
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
self.network_current_names = ()
self.network_weights_backup = None
self.network_bias_backup = None
def fix_network_reset_cached_weight():
try:
import networks as net
net.network_reset_cached_weight = network_reset_cached_weight
except:
pass
def on_ui_tabs():
fix_network_reset_cached_weight()
weights_presets=""
userfilepath = os.path.join(path_root, "scripts","mbwpresets.txt")
if os.path.isfile(userfilepath):
try:
with open(userfilepath) as f:
weights_presets = f.read()
filepath = userfilepath
except OSError as e:
pass
else:
filepath = os.path.join(path_root, "scripts","mbwpresets_master.txt")
try:
with open(filepath) as f:
weights_presets = f.read()
shutil.copyfile(filepath, userfilepath)
except OSError as e:
pass
if "ALLR" not in weights_presets: weights_presets += ADDRAND
with gr.Blocks() as supermergerui:
with gr.Tab("Merge"):
with ResizeHandleRow(equal_height=False):
with gr.Column(variant="compact"):
gr.HTML(value="<p>Merge models and load it for generation</p>")
with gr.Row():
s_reverse= gr.Button(value="Load settings from:",elem_classes=["compact_button"],variant='primary')
mergeid = gr.Textbox(label="merged model ID (-1 for last)", elem_id="model_converter_custom_name",value = "-1")
mclearcache= gr.Button(value="Clear Cache",elem_classes=["compact_button"],variant='primary')
with gr.Row(variant="compact"):
model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Model A",interactive=True)
create_refresh_button(model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
model_b = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Model B",interactive=True)
create_refresh_button(model_b, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
model_c = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Model C",interactive=True)
create_refresh_button(model_c, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
mode = gr.Radio(label = "Merge Mode",choices = ["Weight sum", "Add difference", "Triple sum", "sum Twice"], value="Weight sum", info="A*(1-alpha)+B*alpha")
calcmode = gr.Radio(label = "Calculation Mode",choices = CALCMODES, value = "normal")
with gr.Row(variant="compact"):
with gr.Column(scale = 1):
useblocks = gr.Checkbox(label="use MBW", info="use Merge Block Weights")
with gr.Column(scale = 3), gr.Group() as alpha_group:
with gr.Row():
base_alpha = gr.Slider(label="alpha", minimum=-1.0, maximum=2, step=0.001, value=0.5)
base_beta = gr.Slider(label="beta", minimum=-1.0, maximum=2, step=0.001, value=0.25, interactive=False)
#weights = gr.Textbox(label="weights,base alpha,IN00,IN02,...IN11,M00,OUT00,...,OUT11",lines=2,value="0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5")
with gr.Accordion("Options", open=False):
with gr.Row(variant="compact"):
save_sets = gr.CheckboxGroup(["use cuda","save model", "overwrite","safetensors","fp16","save metadata","copy config","prune","Reset CLIP ids","use old calc method","debug"], value=["safetensors"], show_label=False, label="save settings")
with gr.Row():
components.id_sets = gr.CheckboxGroup(["image", "PNG info"], label="save merged model ID to")
opt_value = gr.Slider(label="option(gamma) ", minimum=-1.0, maximum=20, step=0.1, value=0.3, interactive=True)
with gr.Row(variant="compact"):
with gr.Column(min_width = 50):
with gr.Row():
custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="model_converter_custom_name")
with gr.Column():
with gr.Row():
bake_in_vae = gr.Dropdown(choices=["None"] + list(sd_vae.vae_dict), value="None", label="Bake in VAE", elem_id="modelmerger_bake_in_vae")
create_refresh_button(bake_in_vae, sd_vae.refresh_vae_list, lambda: {"choices": ["None"] + list(sd_vae.vae_dict)}, "modelmerger_refresh_bake_in_vae")
with gr.Row(variant="compact"):
savecurrent = gr.Button(elem_id="savecurrent", elem_classes=["compact_button"], value="Save current merge(fp16 only)")
with gr.Row():
components.merge = gr.Button(elem_id="model_merger_merge", elem_classes=["compact_button"], value="Merge!",variant='primary')
components.mergeandgen = gr.Button(elem_id="model_merger_merge", elem_classes=["compact_button"], value="Merge&Gen",variant='primary')
components.gen = gr.Button(elem_id="model_merger_merge", elem_classes=["compact_button"], value="Gen",variant='primary')
stopmerge = gr.Button(elem_id="stopmerge", elem_classes=["compact_button"], value="Stop")
with gr.Accordion("Merging Block Weights", open=False):
with gr.Row():
isxl = gr.Radio(label = "Block Type",choices = ["1.X or 2.X", "XL"], value = "1.X or 2.X", type="index")
with gr.Tab("Weights Setting"):
with gr.Group(), gr.Tabs():
with gr.Tab("Weights for alpha"):
with gr.Row(variant="compact"):
weights_a = gr.Textbox(label="BASE,IN00,IN02,...IN11,M00,OUT00,...,OUT11",value = "0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5", show_copy_button=True)
with gr.Row(scale=2):
setalpha = gr.Button(elem_id="copytogen", value="↑ Set alpha",variant='primary', scale=3)
readalpha = gr.Button(elem_id="copytogen", value="↓ Read alpha",variant='primary', scale=3)
setx = gr.Button(elem_id="copytogen", value="↑ Set X", min_width="80px", scale=1)
with gr.Tab("beta"):
with gr.Row(variant="compact"):
weights_b = gr.Textbox(label="BASE,IN00,IN02,...IN11,M00,OUT00,...,OUT11",value = "0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2", show_copy_button=True)
with gr.Row(scale=2):
setbeta = gr.Button(elem_id="copytogen", value="↑ Set beta",variant='primary', scale=3)
readbeta = gr.Button(elem_id="copytogen", value="↓ Read beta",variant='primary', scale=3)
sety = gr.Button(elem_id="copytogen", value="↑ Set Y", min_width="80px", scale=1)
with gr.Group(), gr.Tabs():
with gr.Tab("Preset"):
with gr.Row():
dd_preset_weight = gr.Dropdown(label="Select preset", choices=preset_name_list(weights_presets), interactive=True, elem_id="refresh_presets")
preset_refresh = gr.Button(value='\U0001f504', elem_classes=["tool"])
with gr.Tab("Random Preset"):
with gr.Row():
dd_preset_weight_r = gr.Dropdown(label="Load Romdom preset", choices=preset_name_list(weights_presets,True), interactive=True, elem_id="refresh_presets")
preset_refresh_r = gr.Button(value='\U0001f504', elem_classes=["tool"])
luckab = gr.Radio(label = "for",choices = ["none", "alpha", "beta"], value = "none", type="value")
with gr.Tab("Helper"):
with gr.Column():
resetval = gr.Slider(label="Value", show_label=False, info="Value to set/add/mul", minimum=0, maximum=2, step=0.0001, value=0)
resetopt = gr.Radio(label="Pre defined", show_label=False, choices = ["0", "0.25", "0.5", "0.75", "1"], value = "0", type="value")
with gr.Column():
resetblockopt = gr.CheckboxGroup(["BASE","INP*","MID","OUT*"], value=["INP*","OUT*"], label="Blocks", show_label=False, info="Select blocks to change")
with gr.Column():
with gr.Row():
resetweight = gr.Button(elem_classes=["reset"], value="Set")
addweight = gr.Button(elem_classes=["reset"], value="Add")
mulweight = gr.Button(elem_classes=["reset"], value="Mul")
with gr.Row():
lower = gr.Slider(label="Slider Lower Limit", minimum=-2, maximum=3, step=0.1, value=0)
upper = gr.Slider(label="Slider Upper Limit", minimum=-2, maximum=3, step=0.1, value=1)
with gr.Row():
with gr.Column(scale=1, min_width=100):
gr.Slider(visible=False)
with gr.Column(scale=2, min_width=200):
base = gr.Slider(label="Base", minimum=0, maximum=1, step=0.0001, value=0.5)
with gr.Column(scale=1, min_width=100):
gr.Slider(visible=False)
with gr.Row():
with gr.Column(scale=2, min_width=200):
in00 = gr.Slider(label="IN00", minimum=0, maximum=1, step=0.0001, value=0.5)
in01 = gr.Slider(label="IN01", minimum=0, maximum=1, step=0.0001, value=0.5)
in02 = gr.Slider(label="IN02", minimum=0, maximum=1, step=0.0001, value=0.5)
in03 = gr.Slider(label="IN03", minimum=0, maximum=1, step=0.0001, value=0.5)
in04 = gr.Slider(label="IN04", minimum=0, maximum=1, step=0.0001, value=0.5)
in05 = gr.Slider(label="IN05", minimum=0, maximum=1, step=0.0001, value=0.5)
in06 = gr.Slider(label="IN06", minimum=0, maximum=1, step=0.0001, value=0.5)
in07 = gr.Slider(label="IN07", minimum=0, maximum=1, step=0.0001, value=0.5)
in08 = gr.Slider(label="IN08", minimum=0, maximum=1, step=0.0001, value=0.5)
in09 = gr.Slider(label="IN09", minimum=0, maximum=1, step=0.0001, value=0.5)
in10 = gr.Slider(label="IN10", minimum=0, maximum=1, step=0.0001, value=0.5)
in11 = gr.Slider(label="IN11", minimum=0, maximum=1, step=0.0001, value=0.5)
with gr.Column(scale=2, min_width=200):
ou11 = gr.Slider(label="OUT11", minimum=0, maximum=1, step=0.0001, value=0.5)
ou10 = gr.Slider(label="OUT10", minimum=0, maximum=1, step=0.0001, value=0.5)
ou09 = gr.Slider(label="OUT09", minimum=0, maximum=1, step=0.0001, value=0.5)
ou08 = gr.Slider(label="OUT08", minimum=0, maximum=1, step=0.0001, value=0.5)
ou07 = gr.Slider(label="OUT07", minimum=0, maximum=1, step=0.0001, value=0.5)
ou06 = gr.Slider(label="OUT06", minimum=0, maximum=1, step=0.0001, value=0.5)
ou05 = gr.Slider(label="OUT05", minimum=0, maximum=1, step=0.0001, value=0.5)
ou04 = gr.Slider(label="OUT04", minimum=0, maximum=1, step=0.0001, value=0.5)
ou03 = gr.Slider(label="OUT03", minimum=0, maximum=1, step=0.0001, value=0.5)
ou02 = gr.Slider(label="OUT02", minimum=0, maximum=1, step=0.0001, value=0.5)
ou01 = gr.Slider(label="OUT01", minimum=0, maximum=1, step=0.0001, value=0.5)
ou00 = gr.Slider(label="OUT00", minimum=0, maximum=1, step=0.0001, value=0.5)
with gr.Row():
with gr.Column(scale=1, min_width=100):
gr.Slider(visible=False)
with gr.Column(scale=2, min_width=200):
mi00 = gr.Slider(label="M00", minimum=0, maximum=1, step=0.0001, value=0.5)
with gr.Column(scale=1, min_width=100):
gr.Slider(visible=False)
with gr.Tab("Weights Presets"):
with gr.Row():
s_reloadtext = gr.Button(value="Reload Presets",variant='primary')
s_reloadtags = gr.Button(value="Reload Tags",variant='primary')
s_savetext = gr.Button(value="Save Presets",variant='primary')
s_openeditor = gr.Button(value="Open TextEditor",variant='primary')
weightstags= gr.Textbox(label="available",lines = 2,value=tagdicter(weights_presets),visible =True,interactive =True)
wpresets= gr.TextArea(label="",value=(weights_presets+ADDRAND),visible =True,interactive = True)
with gr.Accordion("XYZ Plot", open=False):
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x for x in TYPESEG], value="alpha", type="index")
x_randseednum = gr.Number(value=3, label="number of -1", interactive=True, visible = True)
xgrid = gr.Textbox(label="X Values",lines=3,value="0.25,0.5,0.75")
y_type = gr.Dropdown(label="Y type", choices=[y for y in TYPESEG], value="none", type="index")
ygrid = gr.Textbox(label="Y Values (Disabled if blank)",lines=3,value="",visible =False)
z_type = gr.Dropdown(label="Z type", choices=[y for y in TYPESEG], value="none", type="index")
zgrid = gr.Textbox(label="Z Values (Disabled if blank)",lines=3,value="",visible =False)
esettings = gr.CheckboxGroup(label = "XYZ plot settings",choices=["swap XY","save model","save csv","save anime gif","not save grid","print change","0 stock"],type="value",interactive=True)
with gr.Row():
components.gengrid = gr.Button(elem_id="model_merger_merge", value="Run XYZ Plot",variant='primary')
stopgrid = gr.Button(elem_id="model_merger_merge", value="Stop XYZ Plot")
components.s_reserve1 = gr.Button(value="Reserve XYZ Plot",variant='primary')
with gr.Accordion("XYZ presets",open = True):
with gr.Row():
xyzpresets = gr.Dropdown(label="Preset name",allow_custom_value=True,choices=get_xyzpreset_keylist(),scale=10)
refreshxyzpresets_b = gr.Button(value='\U0001f504', elem_classes=["tool"],scale=1)
savexyzpreset_overwrite = gr.CheckboxGroup(label = " ",choices=["Overwrite"],type="index",interactive=True,scale=1)
with gr.Row():
loadxyzpreset_b = gr.Button(value="Load preset",variant='primary')
savexyzpreset_b = gr.Button(value="Save current plot as preset",variant='primary')
deletexyzpreset_b = gr.Button(value="Delete preset",variant='primary')
openxyzpreset = gr.Button(value="Open XYZ Preset file")
openxyzpreset.click(fn=lambda:subprocess.Popen(['start', xyzpath], shell=True))
with gr.Column(visible = False, variant="compact") as row_inputers:
with gr.Row(variant="compact"):
inputer = gr.Textbox(label="Selected", lines=1, value="", show_copy_button=True)
with gr.Row(variant="compact"):
addtox = gr.Button(value="↑ Add to X Values")
addtoy = gr.Button(value="↑ Add to Y Values")
addtoz = gr.Button(value="↑ Add to Z Values")
with gr.Row(visible = False) as row_blockids:
blockids = gr.CheckboxGroup(label = "block IDs",choices=BLOCKID[:-1],type="value",interactive=True)
with gr.Row(visible = False) as row_calcmode:
calcmodes = gr.CheckboxGroup(label = "calcmode",choices=CALCMODES,type="value",interactive=True)
with gr.Row(visible = False) as row_checkpoints:
checkpoints = gr.CheckboxGroup(label = "checkpoints",choices=[x.model_name for x in sd_models.checkpoints_list.values()],type="value",interactive=True)
create_refresh_button(checkpoints, sd_models.list_models, lambda: {"choices": [x.model_name for x in sd_models.checkpoints_list.values()]}, "refresh_checkpoint_xyz")
with gr.Row(visible = False) as row_blocks:
gr.HTML(value="<p>BASE,IN00,IN01,IN02,IN03,IN04,IN05,IN06,IN07,IN08,IN09,IN10,IN11<br>,M00,OUT00,OUT01,OUT02,OUT03,OUT04,OUT05,OUT06,OUT07,OUT08,OUT09,OUT10,OUT11,Adjust,VAE,print</p>")
with gr.Accordion("Reservation", open=False):
with gr.Row():
components.s_reserve = gr.Button(value="Reserve XY Plot",variant='primary')
s_reloadreserve = gr.Button(value="Reloat List",variant='primary')
components.s_startreserve = gr.Button(value="Start XY plot",variant='primary')
s_delreserve = gr.Button(value="Delete list(-1 for all)",variant='primary')
s_delnum = gr.Number(value=1, label="Delete num : ", interactive=True, visible = True,precision =0)
with gr.Row():
components.numaframe = gr.Dataframe(
headers=["No.","status","xtype","xmenber","ytype","ymenber","ztype","zmenber","model A","model B","model C","alpha","beta","mode","use MBW","weights alpha","weights beta"],
row_count=5,)
components.dtrue = gr.Checkbox(value = True, visible = False)
components.dfalse = gr.Checkbox(value = False,visible = False)
dummy_t = gr.Textbox(value = "",visible = False)
with gr.Accordion("Elemental Merge",open = False):
with gr.Row():
components.esettings1 = gr.CheckboxGroup(label = "settings",choices=["print change"],type="value",interactive=True)
with gr.Row():
deep = gr.Textbox(label="Blocks:Element:Ratio,Blocks:Element:Ratio,...",lines=2,value="")
with gr.Accordion("Adjust", open=False) as acc_ad:
with gr.Row(variant="compact"):
finetune = gr.Textbox(label="Adjust", show_label=False, info="Adjust IN,OUT,OUT2,Contrast,Brightness,COL1,COL2,COL3", visible=True, value="", lines=1)
finetune_write = gr.Button(value="↑", elem_classes=["tool"])
finetune_read = gr.Button(value="↓", elem_classes=["tool"])
finetune_reset = gr.Button(value="\U0001f5d1\ufe0f", elem_classes=["tool"])
with gr.Row(variant="compact"):
with gr.Column(scale=1, min_width=100):
detail1 = gr.Slider(label="IN", minimum=-6, maximum=6, step=0.01, value=0, info="Detail/Noise")
with gr.Column(scale=1, min_width=100):
detail2 = gr.Slider(label="OUT", minimum=-6, maximum=6, step=0.01, value=0, info="Detail/Noise")
with gr.Column(scale=1, min_width=100):
detail3 = gr.Slider(label="OUT2", minimum=-6, maximum=6, step=0.01, value=0, info="Detail/Noise")
with gr.Row(variant="compact"):
with gr.Column(scale=1, min_width=100):
contrast = gr.Slider(label="Contrast", minimum=-10, maximum=10, step=0.01, value=0, info="Contrast/Detail")
with gr.Column(scale=1, min_width=100):
bri = gr.Slider(label="Brightness", minimum=-10, maximum=10, step=0.01, value=0, info="Dark(Minius)-Bright(Plus)")
with gr.Row(variant="compact"):
with gr.Column(scale=1, min_width=100):
col1 = gr.Slider(label="Cyan-Red", minimum=-10, maximum=10, step=0.01, value=0, info="Cyan(Minius)-Red(Plus)")
with gr.Column(scale=1, min_width=100):
col2 = gr.Slider(label="Magenta-Green", minimum=-10, maximum=10, step=0.01, value=0, info="Magenta(Minius)-Green(Plus)")
with gr.Column(scale=1, min_width=100):
col3 = gr.Slider(label="Yellow-Blue", minimum=-10, maximum=10, step=0.01, value=0, info="Yellow(Minius)-Blue(Plus)")
finetune.change(fn=lambda x:gr.update(label = f"Adjust : {x}"if x != "" and x !="0,0,0,0,0,0,0,0" else "Adjust"),inputs=[finetune],outputs = [acc_ad])
with gr.Accordion("Let the Dice roll",open = False,visible=True):
with gr.Row():
gr.HTML(value="<p>R:0~1, U: -0.5~1.5</p>")
with gr.Row():
luckmode = gr.Radio(label = "Random Mode",choices = ["off", "R", "U", "X", "ER", "EU", "EX","custom"], value = "off")
with gr.Row():
lucksets = gr.CheckboxGroup(label = "Settings",choices=["alpha","beta","save E-list"],value=["alpha"],type="value",interactive=True)
with gr.Row():
luckseed = gr.Number(minimum=-1, maximum=4294967295, step=1, label='Seed for Random Ratio', value=-1, elem_id="luckseed")
luckround = gr.Number(minimum=1, maximum=4294967295, step=1, label='Round', value=3, elem_id="luckround")
luckserial = gr.Number(minimum=1, maximum=4294967295, step=1, label='Num of challenge', value=1, elem_id="luckchallenge")
with gr.Row():
luckcustom = gr.Textbox(label="custom",value = "U,0,0,0,0,0,0,0,0,0,0,0,0,R,R,R,R,R,R,R,R,R,R,R,R,R")
with gr.Row():
lucklimits_u = gr.Textbox(label="Upper limit for X",value = "1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1")
with gr.Row():
lucklimits_l = gr.Textbox(label="Lower limit for X",value = "0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
components.rand_merge = gr.Button(elem_id="runrandmerge", value="Run Rand",variant='primary')
with gr.Accordion("Generation Parameters",open = False):
gr.HTML(value='If blank or set to 0, parameters in the "txt2img" tab are used.<br>batch size, restore face, hires fix settigns must be set here')
prompt = gr.Textbox(label="prompt",lines=1,value="")
neg_prompt = gr.Textbox(label="neg_prompt",lines=1,value="")
with gr.Row():
sampler = gr.Dropdown(label='Sampling method', elem_id=f"sampling", choices=[" ",*[x.name for x in samplers]], value=" ", type="index")
steps = gr.Slider(minimum=0.0, maximum=150, step=1, label='Steps',value=0, elem_id="Steps")
cfg = gr.Slider(minimum=0.0, maximum=30, step=0.5, label='CFG scale', value=0, elem_id="cfg")
with gr.Row():
width = gr.Slider(minimum=0, maximum=2048, step=8, label="Width", value=0, elem_id="txt2img_width")
height = gr.Slider(minimum=0, maximum=2048, step=8, label="Height", value=0, elem_id="txt2img_height")
seed = gr.Number(minimum=-1, maximum=4294967295, step=1, label='Seed', value=0, elem_id="seed")
batch_size = denois_str = gr.Slider(minimum=0, maximum=8, step=1, label='Batch size', value=1, elem_id="sm_txt2img_batch_size")
genoptions = gr.CheckboxGroup(label = "Gen Options",choices=["Restore faces", "Tiling", "Hires. fix"], visible = True,interactive=True,type="value")
with gr.Row(elem_id="txt2img_hires_fix_row1", variant="compact"):
hrupscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode)
hr2ndsteps = gr.Slider(minimum=0, maximum=150, step=1, label='Hires steps', value=0, elem_id="txt2img_hires_steps")
denois_str = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength")
hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale")
with gr.Row():
setdefault = gr.Button(elem_id="setdefault", value="set to default",variant='primary')
resetdefault = gr.Button(elem_id="resetdefault", value="reset default",variant='primary')
resetcurrent = gr.Button(elem_id="resetcurrent", value="reset current",variant='primary')
with gr.Accordion("Include/Exclude", open=False) as acc_ex:
with gr.Row():
inex = gr.Radio(label="Mode", choices=["Off","Include","Exclude"], value="Off")
with gr.Row():
ex_blocks = gr.CheckboxGroup(choices=EXCLUDE_CHOICES + ["print"], visible = True,interactive=True,type="value")
with gr.Row():
ex_elems = gr.Textbox(label="Elements")
inex.change(fn=lambda i, x,y: gr.update(label =f"{i} : " + ",".join(x) +","+ y if x != [] or y != "" else "Include/Exclude"), inputs = [inex,ex_blocks,ex_elems],outputs = [acc_ex])
ex_blocks.change(fn=lambda i, x,y: gr.update(label =f"{i} : " + ",".join(x) +","+ y if x != [] or y != "" else "Include/Exclude"), inputs = [inex,ex_blocks,ex_elems],outputs = [acc_ex])
ex_elems.change(fn=lambda i, x,y: gr.update(label =f"{i} : " + ",".join(x) +","+ y if x != [] or y != "" else "Include/Exclude"),inputs=[inex,ex_blocks,ex_elems],outputs = [acc_ex])
with gr.Accordion("Advanced", open=False):
with gr.Row():
currentcache = gr.Textbox(label="Current Cache")
loadcachelist = gr.Button(elem_id="model_merger_merge", value="Reload Cache List",variant='primary')
unloadmodel = gr.Button(value="unload model",variant='primary')
with gr.Column(variant="compact"):
components.currentmodel = gr.Textbox(label="Current Model",lines=1,value="")
components.submit_result = gr.Textbox(label="Message")
output_panel = create_output_panel("txt2img", opts.outdir_txt2img_samples)
mgallery = output_panel[0] if isinstance(output_panel, tuple) else output_panel.gallery
mgeninfo = output_panel[1] if isinstance(output_panel, tuple) else output_panel.generation_info
mhtmlinfo = output_panel[2] if isinstance(output_panel, tuple) else output_panel.infotext
mhtmllog = output_panel[3] if isinstance(output_panel, tuple) else output_panel.html_log
# main ui end
with gr.Tab("LoRA", elem_id="tab_lora"):
pluslora.on_ui_tabs()
with gr.Tab("Analysis", elem_id="tab_analysis"):
with gr.Tab("Models"):
with gr.Row():
an_model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint A",interactive=True)
create_refresh_button(an_model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
an_model_b = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint B",interactive=True)
create_refresh_button(an_model_b, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
with gr.Row():
an_mode = gr.Radio(label = "Analysis Mode",choices = ["ASimilarity","Block","Element","Both"], value = "ASimilarity",type = "value")
an_calc = gr.Radio(label = "Block method",choices = ["Mean","Min","attn2"], value = "Mean",type = "value")
an_include = gr.CheckboxGroup(label = "Include",choices = ["Textencoder(BASE)","U-Net","VAE"], value = ["Textencoder(BASE)","U-Net"],type = "value")
an_settings = gr.CheckboxGroup(label = "Settings",choices=["save as txt", "save as csv"],type="value",interactive=True)
with gr.Row():
run_analysis = gr.Button(value="Run Analysis",variant='primary')
with gr.Row():
analysis_cosdif = gr.Dataframe(headers=["block","key","similarity[%]"],)
with gr.Tab("Text Encoder"):
with gr.Row():
te_smd_loadkeys = gr.Button(value="Calculate Textencoer",variant='primary')
te_smd_searchkeys = gr.Button(value="Search Word(red,blue,girl,...)",variant='primary')
exclude = gr.Checkbox(label="exclude non numeric,alphabet,symbol word")
pickupword = gr.TextArea()
encoded = gr.Dataframe()
run_analysis.click(fn=calccosinedif,inputs=[an_model_a,an_model_b,an_mode,an_settings,an_include,an_calc],outputs=[analysis_cosdif])
with gr.Tab("History", elem_id="tab_history"):
with gr.Row():
with gr.Column(scale = 2):
with gr.Row():
count = gr.Dropdown(choices=["20", "30", "40", "50", "100"], value="20", label="Load count")
load_history = gr.Button(value="Load history",variant='primary', elem_classes=["reset"])
reload_history = gr.Button(value="Reload history", elem_classes=["reset"])
with gr.Column(scale = 2):
with gr.Row():
searchwrods = gr.Textbox(label="",lines=1,value="")
search = gr.Button(value="search", elem_classes=["reset"])
searchmode = gr.Radio(label = "Search Mode",choices = ["or","and"], value = "or",type = "value")
with gr.Row():
history = gr.Dataframe(
headers=["ID","Time","Name","Weights alpha","Weights beta","Model A","Model B","Model C","alpha","beta","Mode","use MBW","custum name","save setting","use ID"],
)
import lora
with gr.Tab("Elements", elem_id="tab_deep"):
with gr.Row():
smd_model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="Checkpoint",interactive=True)
create_refresh_button(smd_model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
smd_loadkeys = gr.Button(value="load keys",variant='primary')
with gr.Row():
smd_lora = gr.Dropdown(list(lora.available_loras.keys()),elem_id="model_converter_model_name",label="LoRA",interactive=True)
create_refresh_button(smd_lora, lora.list_available_loras, lambda: {"choices": list(lora.available_loras.keys())},"refresh_checkpoint_Z")
smd_loadkeys_l = gr.Button(value="load keys",variant='primary')
with gr.Row():
keys = gr.Dataframe(headers=["No.","block","key"],)
with gr.Tab("Metadeta", elem_id="tab_metadata"):
with gr.Row():
meta_model_a = gr.Dropdown(sd_models.checkpoint_tiles(),elem_id="model_converter_model_name",label="read metadata",interactive=True)
create_refresh_button(meta_model_a, sd_models.list_models,lambda: {"choices": sd_models.checkpoint_tiles()},"refresh_checkpoint_Z")
smd_loadmetadata = gr.Button(value="load keys",variant='primary')
with gr.Row():
metadata = gr.TextArea()
smd_loadmetadata.click(
fn=loadmetadata,
inputs=[meta_model_a],
outputs=[metadata]
)
mclearcache.click(fn=clearcache)
smd_loadkeys.click(fn=loadkeys,inputs=[smd_model_a,components.dfalse],outputs=[keys])
smd_loadkeys_l.click(fn=loadkeys,inputs=[smd_lora,components.dtrue],outputs=[keys])
te_smd_loadkeys.click(fn=encodetexts,inputs=[exclude],outputs=[encoded])
te_smd_searchkeys.click(fn=pickupencode,inputs=[pickupword],outputs=[encoded])
def unload():
if shared.sd_model == None: return "already unloaded"
load_model,unload_model_weights()
return "model unloaded"
unloadmodel.click(fn=unload,outputs=[components.submit_result])
load_history.click(fn=load_historyf,inputs=[history,count],outputs=[history])
reload_history.click(fn=load_historyf,inputs=[history,count,components.dtrue],outputs=[history])
components.msettings=[weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,calcmode,useblocks,custom_name,save_sets,components.id_sets,wpresets,deep,finetune,bake_in_vae,opt_value,inex,ex_blocks,ex_elems]
components.imagegal = [mgallery,mgeninfo,mhtmlinfo,mhtmllog]
components.xysettings=[x_type,xgrid,y_type,ygrid,z_type,zgrid,esettings]
components.genparams=[prompt,neg_prompt,steps,sampler,cfg,seed,width,height,batch_size]
components.hiresfix = [genoptions,hrupscaler,hr2ndsteps,denois_str,hr_scale]
components.lucks = [luckmode,lucksets,lucklimits_u,lucklimits_l,luckseed,luckserial,luckcustom,luckround]
setdefault.click(fn = configdealer,
inputs =[*components.genparams,*components.hiresfix[1:],components.dfalse],
)
resetdefault.click(fn = configdealer,
inputs =[*components.genparams,*components.hiresfix[1:],components.dtrue],
)
resetcurrent.click(fn = lambda x : [gr.update(value = x) for x in RESETVALS] ,outputs =[*components.genparams,*components.hiresfix[1:]],)
s_reverse.click(fn = reversparams,
inputs =mergeid,
outputs = [components.submit_result,*components.msettings[0:8],*components.msettings[9:13],deep,calcmode,luckseed,finetune,opt_value,inex,ex_blocks,ex_elems]
)
search.click(fn = searchhistory,inputs=[searchwrods,searchmode],outputs=[history])
s_reloadreserve.click(fn=nulister,inputs=[components.dfalse],outputs=[components.numaframe])
s_delreserve.click(fn=nulister,inputs=[s_delnum],outputs=[components.numaframe])
loadcachelist.click(fn=getcachelist,inputs=[],outputs=[currentcache])
addtox.click(fn=lambda x:gr.Textbox.update(value = x),inputs=[inputer],outputs=[xgrid])
addtoy.click(fn=lambda x:gr.Textbox.update(value = x),inputs=[inputer],outputs=[ygrid])
addtoz.click(fn=lambda x:gr.Textbox.update(value = x),inputs=[inputer],outputs=[zgrid])
stopgrid.click(fn=freezetime)
stopmerge.click(fn=freezemtime)
checkpoints.change(fn=lambda x:",".join(x),inputs=[checkpoints],outputs=[inputer])
blockids.change(fn=lambda x:" ".join(x),inputs=[blockids],outputs=[inputer])
calcmodes.change(fn=lambda x:",".join(x),inputs=[calcmodes],outputs=[inputer])
menbers = [base,in00,in01,in02,in03,in04,in05,in06,in07,in08,in09,in10,in11,mi00,ou00,ou01,ou02,ou03,ou04,ou05,ou06,ou07,ou08,ou09,ou10,ou11]
menbers_plus = menbers + [resetval]
lower.change(fn = lambda x: [gr.update(minimum = x) for i in range(len(menbers_plus))],inputs = [lower],outputs = menbers_plus)
upper.change(fn = lambda x: [gr.update(maximum = x) for i in range(len(menbers_plus))],inputs = [upper],outputs = menbers_plus)
setalpha.click(fn=slider2text,inputs=[*menbers,wpresets, dd_preset_weight,isxl],outputs=[weights_a])
setbeta.click(fn=slider2text,inputs=[*menbers,wpresets, dd_preset_weight,isxl],outputs=[weights_b])
setx.click(fn=add_to_seq,inputs=[xgrid,weights_a],outputs=[xgrid])
sety.click(fn=add_to_seq,inputs=[ygrid,weights_b],outputs=[ygrid])
mode_info = {
"Weight sum": "A*(1-alpha)+B*alpha",
"Add difference": "A+(B-C)*alpha",
"Triple sum": "A*(1-alpha-beta)+B*alpha+C*beta",
"sum Twice": "(A*(1-alpha)+B*alpha)*(1-beta)+C*beta"
}
mode.change(fn=lambda mode,calcmode: [gr.update(info=mode_info[mode]), gr.update(interactive=True if mode in ["Triple sum", "sum Twice"] or calcmode in ["tensor", "tensor2"] else False)], inputs=[mode,calcmode], outputs=[mode, base_beta], show_progress=False)
calcmode.change(fn=lambda calcmode: gr.update(interactive=True) if calcmode in ["tensor", "tensor2","extract"] else gr.update(), inputs=[calcmode], outputs=base_beta, show_progress=False)
useblocks.change(fn=lambda mbw: gr.update(visible=False if mbw else True), inputs=[useblocks], outputs=[alpha_group])
def save_current_merge(custom_name, save_settings):
msg = savemodel(None,None,custom_name,save_settings)
return gr.update(value=msg)
def addblockweights(val, blockopt, *blocks):
if val == "none":
val = 0
value = float(val)
if "BASE" in blockopt:
vals = [blocks[0] + value]
else:
vals = [blocks[0]]
if "INP*" in blockopt:
inp = [blocks[i + 1] + value for i in range(12)]
else:
inp = [blocks[i + 1] for i in range(12)]
vals = vals + inp
if "MID" in blockopt:
mid = [blocks[13] + value]
else:
mid = [blocks[13]]
vals = vals + mid
if "OUT*" in blockopt:
out = [blocks[i + 14] + value for i in range(12)]
else:
out = [blocks[i + 14] for i in range(12)]
vals = vals + out
return setblockweights(vals, blockopt)
def mulblockweights(val, blockopt, *blocks):
if val == "none":
val = 0
value = float(val)
if "BASE" in blockopt:
vals = [blocks[0] * value]
else:
vals = [blocks[0]]
if "INP*" in blockopt:
inp = [blocks[i + 1] * value for i in range(12)]
else:
inp = [blocks[i + 1] for i in range(12)]
vals = vals + inp
if "MID" in blockopt:
mid = [blocks[13] * value]
else:
mid = [blocks[13]]
vals = vals + mid
if "OUT*" in blockopt:
out = [blocks[i + 14] * value for i in range(12)]
else:
out = [blocks[i + 14] for i in range(12)]
vals = vals + out
return setblockweights(vals, blockopt)
def resetblockweights(val, blockopt):
if val == "none":
val = 0
vals = [float(val)] * 26
return setblockweights(vals, blockopt)
def setblockweights(vals, blockopt):
if "BASE" in blockopt:
ret = [gr.update(value = vals[0])]
else:
ret = [gr.update()]
if "INP*" in blockopt:
inp = [gr.update(value = vals[i + 1]) for i in range(12)]
else:
inp = [gr.update() for _ in range(12)]
ret = ret + inp
if "MID" in blockopt:
mid = [gr.update(value = vals[13])]
else:
mid = [gr.update()]
ret = ret + mid
if "OUT*" in blockopt:
out = [gr.update(value = vals[i + 14]) for i in range(12)]
else:
out = [gr.update() for _ in range(12)]
ret = ret + out
return ret
def resetvalopt(opt):
if opt == "none":
value = 0.0
else:
value = float(opt)
return gr.update(value = value)
def finetune_update(finetune, detail1, detail2, detail3, contrast, bri, col1, col2, col3):
arr = [detail1, detail2, detail3, contrast, bri, col1, col2, col3]
tmp = ",".join(map(lambda x: str(int(x)) if x == 0.0 else str(x), arr))
if finetune != tmp:
return gr.update(value=tmp)
return gr.update()
def finetune_reader(finetune):
tmp = [t.strip() for t in finetune.split(",")]
ret = [gr.update()]*7
for i, f in enumerate(tmp[0:7]):
try:
f = float(f)
ret[i] = gr.update(value=f)
except:
pass
return ret
# update finetune
finetunes = [detail1, detail2, detail3, contrast, bri, col1, col2, col3]
finetune_reset.click(fn=lambda: [gr.update(value="")]+[gr.update(value=0.0)]*8, inputs=[], outputs=[finetune, *finetunes])
finetune_read.click(fn=finetune_reader, inputs=[finetune], outputs=[*finetunes])
finetune_write.click(fn=finetune_update, inputs=[finetune, *finetunes], outputs=[finetune])
detail1.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
detail2.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
detail3.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
contrast.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
bri.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
col1.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
col2.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
col3.release(fn=finetune_update, inputs=[finetune, *finetunes], outputs=finetune, show_progress=False)
savecurrent.click(fn=save_current_merge, inputs=[custom_name, save_sets], outputs=[components.submit_result])
resetopt.change(fn=resetvalopt,inputs=[resetopt],outputs=[resetval])
resetweight.click(fn=resetblockweights,inputs=[resetval,resetblockopt],outputs=menbers)
addweight.click(fn=addblockweights,inputs=[resetval,resetblockopt,*menbers],outputs=menbers)
mulweight.click(fn=mulblockweights,inputs=[resetval,resetblockopt,*menbers],outputs=menbers)
readalpha.click(fn=text2slider,inputs=[weights_a,isxl],outputs=menbers)
readbeta.click(fn=text2slider,inputs=[weights_b,isxl],outputs=menbers)
dd_preset_weight.change(fn=on_change_dd_preset_weight,inputs=[wpresets, dd_preset_weight],outputs=menbers)
dd_preset_weight_r.change(fn=on_change_dd_preset_weight_r,inputs=[wpresets, dd_preset_weight_r,luckab],outputs=[weights_a,weights_b])
def refresh_presets(presets,rand,ab = ""):
choices = preset_name_list(presets,rand)
return gr.update(choices = choices)
preset_refresh.click(fn=refresh_presets,inputs=[wpresets,components.dfalse],outputs=[dd_preset_weight])
preset_refresh_r.click(fn=refresh_presets,inputs=[wpresets,components.dtrue],outputs=[weights_a,weights_b])
def changexl(isxl):
out = [True] * 26
if isxl:
for i,id in enumerate(BLOCKID[:-1]):
if id not in BLOCKIDXLL[:-1]:
out[i] = False
return [gr.update(visible = x) for x in out]
isxl.change(fn=changexl,inputs=[isxl], outputs=menbers)
x_type.change(fn=showxy,inputs=[x_type,y_type,z_type], outputs=[row_blockids,row_checkpoints,row_inputers,ygrid,zgrid,row_blocks,row_calcmode])
y_type.change(fn=showxy,inputs=[x_type,y_type,z_type], outputs=[row_blockids,row_checkpoints,row_inputers,ygrid,zgrid,row_blocks,row_calcmode])
z_type.change(fn=showxy,inputs=[x_type,y_type,z_type], outputs=[row_blockids,row_checkpoints,row_inputers,ygrid,zgrid,row_blocks,row_calcmode])
x_randseednum.change(fn=makerand,inputs=[x_randseednum],outputs=[xgrid])
import subprocess
def openeditors():
subprocess.Popen(['start', filepath], shell=True)
def reloadpresets():
try:
with open(filepath) as f:
weights_presets = f.read()
choices = preset_name_list(weights_presets)
return [weights_presets, gr.update(choices = choices)]
except OSError as e:
pass
def savepresets(text):
with open(filepath,mode = 'w') as f:
f.write(text)
s_reloadtext.click(fn=reloadpresets,inputs=[],outputs=[wpresets, dd_preset_weight])
s_reloadtags.click(fn=tagdicter,inputs=[wpresets],outputs=[weightstags])
s_savetext.click(fn=savepresets,inputs=[wpresets],outputs=[])
s_openeditor.click(fn=openeditors,inputs=[],outputs=[])
def savexyzpreset_f(xtype, xvals, ytype, yvals, ztype, zvals, name, mode_overwrite):
new_data = {"xtype": TYPESEG[xtype], "xvalues": xvals,
"ytype": TYPESEG[ytype], "yvalues": yvals,
"ztype": TYPESEG[ztype], "zvalues": zvals
}
data = get_xyzpreset_data()
if mode_overwrite:
data[name] = new_data
else:
if name in data:
gr.Info(f"Supermerger: Preset {name} already exists.")
else:
data[name] = new_data
with open(xyzpath, 'w') as file:
json.dump(data, file, indent=4)
data_keys = list(data.keys())
return gr.update(choices = sorted(data_keys))
def deletexyzpreset_f(name):
data = get_xyzpreset_data()
try: del data[name]
except KeyError: gr.Info(f"Supermerger: Preset {name} not found.")
with open(xyzpath, 'w') as file:
json.dump(data, file, indent=4)
keys_list = list(data.keys())
return gr.update(choices = sorted(keys_list))
def loadxyzpreset_f(name):
data = get_xyzpreset_data()
preset_data = data.get(name)
if not preset_data:
gr.Info(f"Supermerger: Preset {name} not found.")
return [gr.update(value = x) for x in ["alpha","","none","","none",""]]
sets = [("xtype"),"xvalues","ytype","yvalues","ztype","zvalues"]
return [gr.update(value = preset_data.get(x)) for x in sets]
def refreshxyzpresets_f():
return gr.update(choices = get_xyzpreset_keylist())
savexyzpreset_b.click(fn=savexyzpreset_f,inputs=[x_type, xgrid, y_type, ygrid, z_type, zgrid,xyzpresets,savexyzpreset_overwrite],outputs=[xyzpresets])
loadxyzpreset_b.click(fn=loadxyzpreset_f,inputs=[xyzpresets],outputs=[x_type, xgrid, y_type, ygrid, z_type, zgrid])
deletexyzpreset_b.click(fn=deletexyzpreset_f,inputs=[xyzpresets],outputs=[xyzpresets])
refreshxyzpresets_b.click(fn=refreshxyzpresets_f,outputs=[xyzpresets])
return (supermergerui, "SuperMerger", "supermerger"),
msearch = []
mlist=[]
def loadmetadata(model):
import json
checkpoint_info = sd_models.get_closet_checkpoint_match(model)
if ".safetensors" not in checkpoint_info.filename: return "no metadata(not safetensors)"
sdict = sd_models.read_metadata_from_safetensors(checkpoint_info.filename)
if sdict == {}: return "no metadata"
return json.dumps(sdict,indent=4)
def load_historyf(data, count=20, reload=False):
filepath = os.path.join(path_root,"mergehistory.csv")
global mlist,msearch
try:
with open(filepath, 'r') as f:
reader = csv.reader(f)
next(reader) # skip header
row_count = sum(1 for row in reader)
count = int(count)
nth = None
if not reload and data is not None and len(data) > 1:
old = data.loc[len(data)-1, 'ID']
if old != '':
nth = int(old) - count - 1
if nth is None:
msearch = []
mlist = []
nth = row_count - count
f.seek(0)
next(reader)
nlist = [raw for n,raw in enumerate(reader, start=1) if n > nth and n <= (nth + count)]
nlist.reverse()
for m in nlist:
msearch.append(" ".join(m))
maxlen = len(nlist[-1][0])
for i,m in enumerate(nlist):
nlist[i][0] = nlist[i][0].zfill(maxlen)
mlist += nlist
return mlist
except:
return [["no data","",""],]
def searchhistory(words,searchmode):
outs =[]
ando = "and" in searchmode
words = words.split(" ") if " " in words else [words]
for i, m in enumerate(msearch):
hit = ando
for w in words:
if ando:
if w not in m:hit = False
else:
if w in m:hit = True
if hit :outs.append(mlist[i])
if outs == []:return [["no result","",""],]
return outs
#msettings=[0 weights_a,1 weights_b,2 model_a,3 model_b,4 model_c,5 base_alpha,6 base_beta,7 mode,8 useblocks,9 custom_name,10 save_sets,11 id_sets,12 wpresets]
#13 deep,14 calcmode,15 luckseed 16:opt_value 17 include/exclude 18: exclude_blocks, 19: exclude_elements
MSETSNUM = 20
def reversparams(id):
def selectfromhash(hash):
for model in sd_models.checkpoint_tiles():
if hash in model:
return model
return ""
try:
idsets = rwmergelog(id = id)
except:
return [gr.update(value = "ERROR: history file could not open"),*[gr.update() for x in range(MSETSNUM)]]
if type(idsets) == str:
print("ERROR")
return [gr.update(value = idsets),*[gr.update() for x in range(MSETSNUM)]]
if idsets[0] == "ID":return [gr.update(value ="ERROR: no history"),*[gr.update() for x in range(MSETSNUM)]]
mgs = idsets[3:]
if mgs[0] == "":mgs[0] = "0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5"
if mgs[1] == "":mgs[1] = "0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2"
def cutter(text):
text = text.replace("[","").replace("]","").replace("'", "")
return [x.strip() for x in text.split(",") if x != ""]
mgs[2] = selectfromhash(mgs[2]) if len(mgs[2]) > 5 else ""
mgs[3] = selectfromhash(mgs[3]) if len(mgs[3]) > 5 else ""
mgs[4] = selectfromhash(mgs[4]) if len(mgs[4]) > 5 else ""
mgs[7] = mgs[7].split(":")[0] # get mode name only
mgs[8] = mgs[8] =="True"
mgs[10] = cutter(mgs[10])
mgs[11] = cutter(mgs[11])
while len(mgs) < MSETSNUM:
mgs.append("")
mgs[13] = "normal" if mgs[13] == "" else mgs[13]
mgs[14] = -1 if mgs[14] == "" else mgs[14]
mgs[16] = 0.3 if mgs[16] == "" else float(mgs[16])
mgs[17] = "Off" if mgs[17] == "" else mgs[17]
mgs[18] = cutter(mgs[18])
mgs[18] = [x for x in mgs[18] if x in EXCLUDE_CHOICES + ["print"]]
return [gr.update(value = "setting loaded") ,*[gr.update(value = x) for x in mgs[0:MSETSNUM]]]
def add_to_seq(seq,maker):
return gr.Textbox.update(value = maker if seq=="" else seq+"\r\n"+maker)
def load_cachelist():
text = ""
for x in checkpoints_loaded.keys():
text = text +"\r\n"+ x.model_name
return text.replace("\r\n","",1)
def makerand(num):
text = ""
for x in range(int(num)):
text = text +"-1,"
text = text[:-1]
return text
#0 row_blockids, 1 row_checkpoints, 2 row_inputers,3 ygrid, 4 zgrid, 5 row_blocks, 6 row_calcmode
def showxy(x,y,z):
flags =[False]*7
t = TYPESEG
txy = t[x] + t[y] + t[z]
if "model" in txy : flags[1] = flags[2] = True
if "pinpoint" in txy : flags[0] = flags[2] = True
if "clude" in txy in txy : flags[5] = True
if "calcmode" in txy : flags[6] = True
if not "none" in t[y] : flags[3] = flags[2] = True
if not "none" in t[z] : flags[4] = flags[2] = True
return [gr.update(visible = x) for x in flags]
def get_xyzpreset_data():
try:
with open(xyzpath, 'r') as file:
return json.load(file)
except FileNotFoundError:
with open(xyzpath, 'w') as file:
json.dump({}, file, indent=4)
return {}
def get_xyzpreset_keylist():
keys_list = list(get_xyzpreset_data())
return sorted(keys_list)
def text2slider(text, isxl=False):
vals = [t.strip() for t in text.split(",")]
vals = [0 if v in "RUX" else v for v in vals]
if isxl:
j = 0
ret = []
for i, v in enumerate(ISXLBLOCK):
if v:
ret.append(gr.update(value = float(vals[j])))
j += 1
else:
ret.append(gr.update())
return ret
return [gr.update(value = float(v)) for v in vals]
def slider2text(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,presets, preset, isxl):
az = find_preset_by_name(presets, preset)
if az is not None:
if any(element in az for element in RANCHA):return az
numbers = [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z]
if isxl:
newnums = []
for i,id in enumerate(BLOCKID[:-1]):
if id in BLOCKIDXLL[:-1]:
newnums.append(numbers[i])
numbers = newnums
numbers = [str(x) for x in numbers]
return gr.update(value = ",".join(numbers) )
def on_change_dd_preset_weight(presets, preset):
weights = find_preset_by_name(presets, preset)
if weights is not None:
return text2slider(weights)
def on_change_dd_preset_weight_r(presets, preset, ab):
weights = find_preset_by_name(presets, preset)
if weights is not None:
if "none" in ab : return gr.update(),gr.update()
if "alpha" in ab : return gr.update(value = weights),gr.update()
if "beta" in ab : return gr.update(),gr.update(value = weights)
return gr.update(),gr.update()
RANCHA = ["R","U","X"]
def tagdicter(presets, rand = False):
presets=presets.splitlines()
wdict={}
for l in presets:
w=""
if ":" in l :
key = l.split(":",1)[0]
w = l.split(":",1)[1]
if "\t" in l:
key = l.split("\t",1)[0]
w = l.split("\t",1)[1]
if len([w for w in w.split(",")]) == 26:
if rand and not any(element in w for element in RANCHA) : continue
wdict[key.strip()]=w
return ",".join(list(wdict.keys()))
def preset_name_list(presets, rand = False):
return tagdicter(presets, rand).split(",")
def find_preset_by_name(presets, preset):
presets = presets.splitlines()
for l in presets:
if ":" in l:
key = l.split(":",1)[0]
w = l.split(":",1)[1]
elif "\t" in l:
key = l.split("\t",1)[0]
w = l.split("\t",1)[1]
else:
continue
if key == preset and len([w for w in w.split(",")]) == 26:
return w
return None
BLOCKID=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11","Not Merge"]
BLOCKIDXL=['BASE', 'IN0', 'IN1', 'IN2', 'IN3', 'IN4', 'IN5', 'IN6', 'IN7', 'IN8', 'M', 'OUT0', 'OUT1', 'OUT2', 'OUT3', 'OUT4', 'OUT5', 'OUT6', 'OUT7', 'OUT8', 'VAE']
BLOCKIDXLL=['BASE', 'IN00', 'IN01', 'IN02', 'IN03', 'IN04', 'IN05', 'IN06', 'IN07', 'IN08', 'M00', 'OUT00', 'OUT01', 'OUT02', 'OUT03', 'OUT04', 'OUT05', 'OUT06', 'OUT07', 'OUT08', 'VAE']
ISXLBLOCK=[True, True, True, True, True, True, True, True, True, True, False, False, False, True, True, True, True, True, True, True, True, True, True, False, False, False]
def modeltype(sd):
if "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.weight" in sd.keys():
modeltype = "XL"
else:
modeltype = "1.X or 2.X"
return modeltype
def loadkeys(model_a, lora):
if lora:
import lora
sd = sd_models.read_state_dict(lora.available_loras[model_a].filename,"cpu")
else:
sd = loadmodel(model_a)
keys = []
mtype = modeltype(sd)
if lora:
for i, key in enumerate(sd.keys()):
keys.append([i,"LoRA",key,sd[key].shape])
else:
for i, key in enumerate(sd.keys()):
keys.append([i,blockfromkey(key,mtype),key,sd[key].shape])
return keys
def loadmodel(model):
checkpoint_info = sd_models.get_closet_checkpoint_match(model)
sd = sd_models.read_state_dict(checkpoint_info.filename,"cpu")
return sd
ADDRAND = "\n\
ALL_R R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R\n\
ALL_U U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U,U\n\
ALL_X X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X\n\
"
def calccosinedif(model_a,model_b,mode,settings,include,calc):
inc = " ".join(include)
settings = " ".join(settings)
a, b = loadmodel(model_a), loadmodel(model_b)
name = filenamecutter(model_a) + "-" + filenamecutter(model_b)
cosine_similarities = []
blocksim = {}
blockvals = []
attn2 = {}
isxl = "XL" == modeltype(a)
blockids = BLOCKIDXLL if isxl else BLOCKID
for bl in blockids:
blocksim[bl] = []
blocksim["VAE"] = []
if "ASim" in mode:
result = asimilarity(a,b,isxl)
if len(settings) > 1: savecalc(result,name,settings,True,"Asim")
del a ,b
gc.collect()
return result
else:
for key in tqdm(a.keys(), desc="Calculating cosine similarity"):
block = None
if blockfromkey(key,isxl) == "Not Merge": continue
if "model_ema" in key: continue
if "model" not in key:continue
if "first_stage_model" in key and not ("VAE" in inc):
continue
elif "first_stage_model" in key and "VAE" in inc:
block = "VAE"
if "diffusion_model" in key and not ("U-Net" in inc): continue
if "encoder" in key and not ("encoder" in inc): continue
if key in b and a[key].size() == b[key].size():
a_flat = a[key].view(-1).to(torch.float32)
b_flat = b[key].view(-1).to(torch.float32)
simab = torch.nn.functional.cosine_similarity(a_flat.unsqueeze(0), b_flat.unsqueeze(0))
if block is None: block,blocks26 = blockfromkey(key,isxl)
if block =="Not Merge" :continue
cosine_similarities.append([block, key, round(simab.item()*100,3)])
blocksim[blocks26].append(round(simab.item()*100,3))
if "attn2.to_out.0.weight" in key: attn2[block] = round(simab.item()*100,3)
for bl in blockids:
val = None
if bl == "Not Merge": continue
if bl not in blocksim.keys():continue
if blocksim[bl] == []: continue
if "Mean" in calc:
val = mean(blocksim[bl])
elif "Min" in calc:
val = min(blocksim[bl])
else:
if bl in attn2.keys():val = attn2[bl]
if val:blockvals.append([bl,"",round(val,3)])
if mode != "Element": cosine_similarities.insert(0,[bl,"",round(mean(blocksim[bl]),3)])
if mode == "Block":
if len(settings) > 1: savecalc(blockvals,name,settings,True,"Blocks")
del a ,b
gc.collect()
return blockvals
else:
if len(settings) > 1: savecalc(cosine_similarities,name,settings,False,"Elements",)
del a ,b
gc.collect()
return cosine_similarities
def savecalc(data,name,settings,blocks,add):
name = name + "_" + add
csvpath = os.path.join(path_root,f"{name}.csv")
txtpath = os.path.join(path_root,f"{name}.txt")
txt = ""
for row in data:
row = [str(r) for r in row]
txt = txt + ",".join(row)+"\n"
if blocks: txt = txt.replace(",,",",")
if "txt" in settings:
with open(txtpath, 'w+') as f:
f.writelines(txt)
print("file saved to ",txtpath)
if "csv" in settings:
with open(csvpath, 'w+') as f:
f.writelines(txt)
print("file saved to ",csvpath)
#code from https://huggingface.co/JosephusCheung/ASimilarityCalculatior
def cal_cross_attn(to_q, to_k, to_v, rand_input):
hidden_dim, embed_dim = to_q.shape
attn_to_q = nn.Linear(hidden_dim, embed_dim, bias=False)
attn_to_k = nn.Linear(hidden_dim, embed_dim, bias=False)
attn_to_v = nn.Linear(hidden_dim, embed_dim, bias=False)
attn_to_q.load_state_dict({"weight": to_q})
attn_to_k.load_state_dict({"weight": to_k})
attn_to_v.load_state_dict({"weight": to_v})
return torch.einsum(
"ik, jk -> ik",
F.softmax(torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)), dim=-1),
attn_to_v(rand_input)
)
def eval(model, n, input, block):
qk = f"model.diffusion_model.{block}_block{n}.1.transformer_blocks.0.attn1.to_q.weight"
uk = f"model.diffusion_model.{block}_block{n}.1.transformer_blocks.0.attn1.to_k.weight"
vk = f"model.diffusion_model.{block}_block{n}.1.transformer_blocks.0.attn1.to_v.weight"
atoq, atok, atov = model[qk], model[uk], model[vk]
attn = cal_cross_attn(atoq, atok, atov, input)
return attn
ATTN1BLOCKS = [[1,"input"],[2,"input"],[4,"input"],[5,"input"],[7,"input"],[8,"input"],["","middle"],
[3,"output"],[4,"output"],[5,"output"],[6,"output"],[7,"output"],[8,"output"],[9,"output"],[10,"output"],[11,"output"]]
def asimilarity(model_a,model_b,mtype):
torch.manual_seed(2244096)
sims = []
for nblock in tqdm(ATTN1BLOCKS, desc="Calculating cosine similarity"):
n,block = nblock[0],nblock[1]
if n != "": n = f"s.{n}"
key = f"model.diffusion_model.{block}_block{n}.1.transformer_blocks.0.attn1.to_q.weight"
hidden_dim, embed_dim = model_a[key].shape
rand_input = torch.randn([embed_dim, hidden_dim])
attn_a = eval(model_a, n, rand_input, block)
attn_b = eval(model_b, n, rand_input, block)
sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
sims.append([blockfromkey(key,mtype),"",round(sim.item() * 100,3)])
return sims
CONFIGS = ["prompt","neg_prompt","Steps","Sampling method","CFG scale","Seed","Width","Height","Batch size","Upscaler","Hires steps","Denoising strength","Upscale by"]
RESETVALS = ["","",0," ",0,0,0,0,1,"Latent",0,0.7,2]
def configdealer(prompt,neg_prompt,steps,sampler,cfg,seed,width,height,batch_size,
hrupscaler,hr2ndsteps,denois_str,hr_scale,reset):
data = [prompt,neg_prompt,steps,sampler,cfg,seed,width,height,batch_size,
hrupscaler,hr2ndsteps,denois_str,hr_scale]
current_directory = os.getcwd()
jsonpath = os.path.join(current_directory,"ui-config.json")
print(jsonpath)
with open(jsonpath, 'r') as file:
json_data = json.load(file)
for name,men,default in zip(CONFIGS,data,RESETVALS):
key = f"supermerger/{name}/value"
json_data[key] = default if reset else men
with open(jsonpath, 'w') as file:
json.dump(json_data, file, indent=4)
sorted_output = []
def encodetexts(exclude):
isxl = hasattr(shared.sd_model,"conditioner")
model = shared.sd_model.conditioner.embedders[0] if isxl else shared.sd_model.cond_stage_model
encoder = model.encode_with_transformers
tokenizer = model.tokenizer
vocab = tokenizer.get_vocab()
byte_decoder = tokenizer.byte_decoder
batch = 500
b_texts = [list(vocab.items())[i:i + batch] for i in range(0, len(vocab), batch)]
output = []
for texts in tqdm(b_texts):
batch = []
words = []
for word, idx in texts:
tokens = [model.id_start, idx, model.id_end] + [model.id_end] * 74
batch.append(tokens)
words.append((idx, word))
embedding = encoder(torch.IntTensor(batch).to("cuda"))[:,1,:] # (bs,768)
embedding = embedding.to('cuda')
emb_norms = torch.linalg.vector_norm(embedding, dim=-1) # (bs,)
for i, (word, token) in enumerate(texts):
try:
word = bytearray([byte_decoder[x] for x in word]).decode("utf-8")
except UnicodeDecodeError:
pass
if exclude:
if has_alphanumeric(word) : output.append([word,token,emb_norms[i].item()])
else:
output.append([word,token,emb_norms[i].item()])
output = sorted(output, key=lambda x: x[2], reverse=True)
for i in range(len(output)):
output[i].insert(0,i)
global sorted_output
sorted_output = output
return output[:1000]
def pickupencode(texts):
wordlist = [x[1] for x in sorted_output]
texts = texts.split(",")
output = []
for text in texts:
if text in wordlist:
output.append(sorted_output[wordlist.index(text)])
if text+"</w>" in wordlist:
output.append(sorted_output[wordlist.index(text+"</w>")])
return output
def has_alphanumeric(text):
pattern = re.compile(r'[a-zA-Z0-9!@#$%^&*()_+{}\[\]:;"\'<>,.?/\|\\]')
return bool(pattern.search(text.replace("</w>","")))
if __package__ == "supermerger":
script_callbacks.on_ui_tabs(on_ui_tabs)
|