|
import os |
|
import cv2 |
|
import torch |
|
|
|
from modules import devices |
|
from annotator.annotator_path import models_path |
|
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor |
|
|
|
try: |
|
from modules.modelloader import load_file_from_url |
|
except ImportError: |
|
|
|
from basicsr.utils.download_util import load_file_from_url |
|
|
|
config_clip_g = { |
|
"attention_dropout": 0.0, |
|
"dropout": 0.0, |
|
"hidden_act": "gelu", |
|
"hidden_size": 1664, |
|
"image_size": 224, |
|
"initializer_factor": 1.0, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 8192, |
|
"layer_norm_eps": 1e-05, |
|
"model_type": "clip_vision_model", |
|
"num_attention_heads": 16, |
|
"num_channels": 3, |
|
"num_hidden_layers": 48, |
|
"patch_size": 14, |
|
"projection_dim": 1280, |
|
"torch_dtype": "float32" |
|
} |
|
|
|
config_clip_h = { |
|
"attention_dropout": 0.0, |
|
"dropout": 0.0, |
|
"hidden_act": "gelu", |
|
"hidden_size": 1280, |
|
"image_size": 224, |
|
"initializer_factor": 1.0, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 5120, |
|
"layer_norm_eps": 1e-05, |
|
"model_type": "clip_vision_model", |
|
"num_attention_heads": 16, |
|
"num_channels": 3, |
|
"num_hidden_layers": 32, |
|
"patch_size": 14, |
|
"projection_dim": 1024, |
|
"torch_dtype": "float32" |
|
} |
|
|
|
config_clip_vitl = { |
|
"attention_dropout": 0.0, |
|
"dropout": 0.0, |
|
"hidden_act": "quick_gelu", |
|
"hidden_size": 1024, |
|
"image_size": 224, |
|
"initializer_factor": 1.0, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 4096, |
|
"layer_norm_eps": 1e-05, |
|
"model_type": "clip_vision_model", |
|
"num_attention_heads": 16, |
|
"num_channels": 3, |
|
"num_hidden_layers": 24, |
|
"patch_size": 14, |
|
"projection_dim": 768, |
|
"torch_dtype": "float32" |
|
} |
|
|
|
configs = { |
|
'clip_g': config_clip_g, |
|
'clip_h': config_clip_h, |
|
'clip_vitl': config_clip_vitl, |
|
} |
|
|
|
downloads = { |
|
'clip_vitl': 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/pytorch_model.bin', |
|
'clip_g': 'https://huggingface.co/lllyasviel/Annotators/resolve/main/clip_g.pth', |
|
'clip_h': 'https://huggingface.co/h94/IP-Adapter/resolve/main/models/image_encoder/pytorch_model.bin' |
|
} |
|
|
|
|
|
clip_vision_h_uc = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'clip_vision_h_uc.data') |
|
clip_vision_h_uc = torch.load(clip_vision_h_uc, map_location=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))['uc'] |
|
|
|
clip_vision_vith_uc = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'clip_vision_vith_uc.data') |
|
clip_vision_vith_uc = torch.load(clip_vision_vith_uc, map_location=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))['uc'] |
|
|
|
|
|
class ClipVisionDetector: |
|
def __init__(self, config, low_vram: bool): |
|
assert config in downloads |
|
self.download_link = downloads[config] |
|
self.model_path = os.path.join(models_path, 'clip_vision') |
|
self.file_name = config + '.pth' |
|
self.config = configs[config] |
|
self.device = ( |
|
torch.device("cpu") if low_vram else |
|
devices.get_device_for("controlnet") |
|
) |
|
os.makedirs(self.model_path, exist_ok=True) |
|
file_path = os.path.join(self.model_path, self.file_name) |
|
if not os.path.exists(file_path): |
|
load_file_from_url(url=self.download_link, model_dir=self.model_path, file_name=self.file_name) |
|
config = CLIPVisionConfig(**self.config) |
|
|
|
self.model = CLIPVisionModelWithProjection(config) |
|
self.processor = CLIPImageProcessor(crop_size=224, |
|
do_center_crop=True, |
|
do_convert_rgb=True, |
|
do_normalize=True, |
|
do_resize=True, |
|
image_mean=[0.48145466, 0.4578275, 0.40821073], |
|
image_std=[0.26862954, 0.26130258, 0.27577711], |
|
resample=3, |
|
size=224) |
|
sd = torch.load(file_path, map_location=self.device) |
|
self.model.load_state_dict(sd, strict=False) |
|
del sd |
|
self.model.to(self.device) |
|
self.model.eval() |
|
|
|
def unload_model(self): |
|
if self.model is not None: |
|
self.model.to('meta') |
|
|
|
def __call__(self, input_image): |
|
with torch.no_grad(): |
|
input_image = cv2.resize(input_image, (224, 224), interpolation=cv2.INTER_AREA) |
|
feat = self.processor(images=input_image, return_tensors="pt") |
|
feat['pixel_values'] = feat['pixel_values'].to(self.device) |
|
result = self.model(**feat, output_hidden_states=True) |
|
result['hidden_states'] = [v.to(self.device) for v in result['hidden_states']] |
|
result = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k, v in result.items()} |
|
return result |
|
|