|
from typing import List, Tuple |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
def preprocess( |
|
img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256) |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: |
|
"""Do preprocessing for DWPose model inference. |
|
|
|
Args: |
|
img (np.ndarray): Input image in shape. |
|
input_size (tuple): Input image size in shape (w, h). |
|
|
|
Returns: |
|
tuple: |
|
- resized_img (np.ndarray): Preprocessed image. |
|
- center (np.ndarray): Center of image. |
|
- scale (np.ndarray): Scale of image. |
|
""" |
|
|
|
img_shape = img.shape[:2] |
|
out_img, out_center, out_scale = [], [], [] |
|
if len(out_bbox) == 0: |
|
out_bbox = [[0, 0, img_shape[1], img_shape[0]]] |
|
for i in range(len(out_bbox)): |
|
x0 = out_bbox[i][0] |
|
y0 = out_bbox[i][1] |
|
x1 = out_bbox[i][2] |
|
y1 = out_bbox[i][3] |
|
bbox = np.array([x0, y0, x1, y1]) |
|
|
|
|
|
center, scale = bbox_xyxy2cs(bbox, padding=1.25) |
|
|
|
|
|
resized_img, scale = top_down_affine(input_size, scale, center, img) |
|
|
|
|
|
mean = np.array([123.675, 116.28, 103.53]) |
|
std = np.array([58.395, 57.12, 57.375]) |
|
resized_img = (resized_img - mean) / std |
|
|
|
out_img.append(resized_img) |
|
out_center.append(center) |
|
out_scale.append(scale) |
|
|
|
return out_img, out_center, out_scale |
|
|
|
|
|
def inference(sess, img): |
|
"""Inference DWPose model. |
|
|
|
Args: |
|
sess : ONNXRuntime session. |
|
img : Input image in shape. |
|
|
|
Returns: |
|
outputs : Output of DWPose model. |
|
""" |
|
all_out = [] |
|
|
|
input = np.stack(img, axis=0).transpose(0, 3, 1, 2) |
|
input = input.astype(np.float32) |
|
if "InferenceSession" in type(sess).__name__: |
|
input_name = sess.get_inputs()[0].name |
|
all_outputs = sess.run(None, {input_name: input}) |
|
for batch_idx in range(len(all_outputs[0])): |
|
outputs = [all_outputs[i][batch_idx:batch_idx+1,...] for i in range(len(all_outputs))] |
|
all_out.append(outputs) |
|
return all_out |
|
|
|
for i in range(len(img)): |
|
|
|
input = img[i].transpose(2, 0, 1) |
|
input = input[None, :, :, :] |
|
|
|
outNames = sess.getUnconnectedOutLayersNames() |
|
sess.setInput(input) |
|
outputs = sess.forward(outNames) |
|
all_out.append(outputs) |
|
|
|
return all_out |
|
|
|
|
|
def postprocess(outputs: List[np.ndarray], |
|
model_input_size: Tuple[int, int], |
|
center: Tuple[int, int], |
|
scale: Tuple[int, int], |
|
simcc_split_ratio: float = 2.0 |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
"""Postprocess for DWPose model output. |
|
|
|
Args: |
|
outputs (np.ndarray): Output of RTMPose model. |
|
model_input_size (tuple): RTMPose model Input image size. |
|
center (tuple): Center of bbox in shape (x, y). |
|
scale (tuple): Scale of bbox in shape (w, h). |
|
simcc_split_ratio (float): Split ratio of simcc. |
|
|
|
Returns: |
|
tuple: |
|
- keypoints (np.ndarray): Rescaled keypoints. |
|
- scores (np.ndarray): Model predict scores. |
|
""" |
|
all_key = [] |
|
all_score = [] |
|
for i in range(len(outputs)): |
|
|
|
simcc_x, simcc_y = outputs[i] |
|
keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio) |
|
|
|
|
|
keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2 |
|
all_key.append(keypoints[0]) |
|
all_score.append(scores[0]) |
|
|
|
return np.array(all_key), np.array(all_score) |
|
|
|
|
|
def bbox_xyxy2cs(bbox: np.ndarray, |
|
padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]: |
|
"""Transform the bbox format from (x,y,w,h) into (center, scale) |
|
|
|
Args: |
|
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted |
|
as (left, top, right, bottom) |
|
padding (float): BBox padding factor that will be multilied to scale. |
|
Default: 1.0 |
|
|
|
Returns: |
|
tuple: A tuple containing center and scale. |
|
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or |
|
(n, 2) |
|
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or |
|
(n, 2) |
|
""" |
|
|
|
dim = bbox.ndim |
|
if dim == 1: |
|
bbox = bbox[None, :] |
|
|
|
|
|
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3]) |
|
center = np.hstack([x1 + x2, y1 + y2]) * 0.5 |
|
scale = np.hstack([x2 - x1, y2 - y1]) * padding |
|
|
|
if dim == 1: |
|
center = center[0] |
|
scale = scale[0] |
|
|
|
return center, scale |
|
|
|
|
|
def _fix_aspect_ratio(bbox_scale: np.ndarray, |
|
aspect_ratio: float) -> np.ndarray: |
|
"""Extend the scale to match the given aspect ratio. |
|
|
|
Args: |
|
scale (np.ndarray): The image scale (w, h) in shape (2, ) |
|
aspect_ratio (float): The ratio of ``w/h`` |
|
|
|
Returns: |
|
np.ndarray: The reshaped image scale in (2, ) |
|
""" |
|
w, h = np.hsplit(bbox_scale, [1]) |
|
bbox_scale = np.where(w > h * aspect_ratio, |
|
np.hstack([w, w / aspect_ratio]), |
|
np.hstack([h * aspect_ratio, h])) |
|
return bbox_scale |
|
|
|
|
|
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray: |
|
"""Rotate a point by an angle. |
|
|
|
Args: |
|
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, ) |
|
angle_rad (float): rotation angle in radian |
|
|
|
Returns: |
|
np.ndarray: Rotated point in shape (2, ) |
|
""" |
|
sn, cs = np.sin(angle_rad), np.cos(angle_rad) |
|
rot_mat = np.array([[cs, -sn], [sn, cs]]) |
|
return rot_mat @ pt |
|
|
|
|
|
def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray: |
|
"""To calculate the affine matrix, three pairs of points are required. This |
|
function is used to get the 3rd point, given 2D points a & b. |
|
|
|
The 3rd point is defined by rotating vector `a - b` by 90 degrees |
|
anticlockwise, using b as the rotation center. |
|
|
|
Args: |
|
a (np.ndarray): The 1st point (x,y) in shape (2, ) |
|
b (np.ndarray): The 2nd point (x,y) in shape (2, ) |
|
|
|
Returns: |
|
np.ndarray: The 3rd point. |
|
""" |
|
direction = a - b |
|
c = b + np.r_[-direction[1], direction[0]] |
|
return c |
|
|
|
|
|
def get_warp_matrix(center: np.ndarray, |
|
scale: np.ndarray, |
|
rot: float, |
|
output_size: Tuple[int, int], |
|
shift: Tuple[float, float] = (0., 0.), |
|
inv: bool = False) -> np.ndarray: |
|
"""Calculate the affine transformation matrix that can warp the bbox area |
|
in the input image to the output size. |
|
|
|
Args: |
|
center (np.ndarray[2, ]): Center of the bounding box (x, y). |
|
scale (np.ndarray[2, ]): Scale of the bounding box |
|
wrt [width, height]. |
|
rot (float): Rotation angle (degree). |
|
output_size (np.ndarray[2, ] | list(2,)): Size of the |
|
destination heatmaps. |
|
shift (0-100%): Shift translation ratio wrt the width/height. |
|
Default (0., 0.). |
|
inv (bool): Option to inverse the affine transform direction. |
|
(inv=False: src->dst or inv=True: dst->src) |
|
|
|
Returns: |
|
np.ndarray: A 2x3 transformation matrix |
|
""" |
|
shift = np.array(shift) |
|
src_w = scale[0] |
|
dst_w = output_size[0] |
|
dst_h = output_size[1] |
|
|
|
|
|
rot_rad = np.deg2rad(rot) |
|
src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad) |
|
dst_dir = np.array([0., dst_w * -0.5]) |
|
|
|
|
|
src = np.zeros((3, 2), dtype=np.float32) |
|
src[0, :] = center + scale * shift |
|
src[1, :] = center + src_dir + scale * shift |
|
src[2, :] = _get_3rd_point(src[0, :], src[1, :]) |
|
|
|
|
|
dst = np.zeros((3, 2), dtype=np.float32) |
|
dst[0, :] = [dst_w * 0.5, dst_h * 0.5] |
|
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir |
|
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) |
|
|
|
if inv: |
|
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src)) |
|
else: |
|
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst)) |
|
|
|
return warp_mat |
|
|
|
|
|
def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict, |
|
img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: |
|
"""Get the bbox image as the model input by affine transform. |
|
|
|
Args: |
|
input_size (dict): The input size of the model. |
|
bbox_scale (dict): The bbox scale of the img. |
|
bbox_center (dict): The bbox center of the img. |
|
img (np.ndarray): The original image. |
|
|
|
Returns: |
|
tuple: A tuple containing center and scale. |
|
- np.ndarray[float32]: img after affine transform. |
|
- np.ndarray[float32]: bbox scale after affine transform. |
|
""" |
|
w, h = input_size |
|
warp_size = (int(w), int(h)) |
|
|
|
|
|
bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h) |
|
|
|
|
|
center = bbox_center |
|
scale = bbox_scale |
|
rot = 0 |
|
warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h)) |
|
|
|
|
|
img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR) |
|
|
|
return img, bbox_scale |
|
|
|
|
|
def get_simcc_maximum(simcc_x: np.ndarray, |
|
simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: |
|
"""Get maximum response location and value from simcc representations. |
|
|
|
Note: |
|
instance number: N |
|
num_keypoints: K |
|
heatmap height: H |
|
heatmap width: W |
|
|
|
Args: |
|
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx) |
|
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy) |
|
|
|
Returns: |
|
tuple: |
|
- locs (np.ndarray): locations of maximum heatmap responses in shape |
|
(K, 2) or (N, K, 2) |
|
- vals (np.ndarray): values of maximum heatmap responses in shape |
|
(K,) or (N, K) |
|
""" |
|
N, K, Wx = simcc_x.shape |
|
simcc_x = simcc_x.reshape(N * K, -1) |
|
simcc_y = simcc_y.reshape(N * K, -1) |
|
|
|
|
|
x_locs = np.argmax(simcc_x, axis=1) |
|
y_locs = np.argmax(simcc_y, axis=1) |
|
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32) |
|
max_val_x = np.amax(simcc_x, axis=1) |
|
max_val_y = np.amax(simcc_y, axis=1) |
|
|
|
|
|
mask = max_val_x > max_val_y |
|
max_val_x[mask] = max_val_y[mask] |
|
vals = max_val_x |
|
locs[vals <= 0.] = -1 |
|
|
|
|
|
locs = locs.reshape(N, K, 2) |
|
vals = vals.reshape(N, K) |
|
|
|
return locs, vals |
|
|
|
|
|
def decode(simcc_x: np.ndarray, simcc_y: np.ndarray, |
|
simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]: |
|
"""Modulate simcc distribution with Gaussian. |
|
|
|
Args: |
|
simcc_x (np.ndarray[K, Wx]): model predicted simcc in x. |
|
simcc_y (np.ndarray[K, Wy]): model predicted simcc in y. |
|
simcc_split_ratio (int): The split ratio of simcc. |
|
|
|
Returns: |
|
tuple: A tuple containing center and scale. |
|
- np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2) |
|
- np.ndarray[float32]: scores in shape (K,) or (n, K) |
|
""" |
|
keypoints, scores = get_simcc_maximum(simcc_x, simcc_y) |
|
keypoints /= simcc_split_ratio |
|
|
|
return keypoints, scores |
|
|
|
|
|
def inference_pose(session, out_bbox, oriImg, model_input_size: Tuple[int, int]= (288, 384) ): |
|
resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size) |
|
outputs = inference(session, resized_img) |
|
keypoints, scores = postprocess(outputs, model_input_size, center, scale) |
|
|
|
return keypoints, scores |