|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from .cv_ox_det import inference_detector |
|
from .cv_ox_pose import inference_pose |
|
|
|
from typing import List, Optional |
|
from .types import HumanPoseResult, BodyResult, Keypoint |
|
|
|
|
|
class Wholebody: |
|
def __init__(self, onnx_det: str, onnx_pose: str): |
|
|
|
device = 'cpu' |
|
backend = cv2.dnn.DNN_BACKEND_OPENCV if device == 'cpu' else cv2.dnn.DNN_BACKEND_CUDA |
|
|
|
providers = cv2.dnn.DNN_TARGET_CPU if device == 'cpu' else cv2.dnn.DNN_TARGET_CUDA |
|
|
|
self.session_det = cv2.dnn.readNetFromONNX(onnx_det) |
|
self.session_det.setPreferableBackend(backend) |
|
self.session_det.setPreferableTarget(providers) |
|
|
|
self.session_pose = cv2.dnn.readNetFromONNX(onnx_pose) |
|
self.session_pose.setPreferableBackend(backend) |
|
self.session_pose.setPreferableTarget(providers) |
|
|
|
def __call__(self, oriImg) -> Optional[np.ndarray]: |
|
det_result = inference_detector(self.session_det, oriImg) |
|
if det_result is None: |
|
return None |
|
|
|
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg) |
|
|
|
keypoints_info = np.concatenate( |
|
(keypoints, scores[..., None]), axis=-1) |
|
|
|
neck = np.mean(keypoints_info[:, [5, 6]], axis=1) |
|
|
|
neck[:, 2:4] = np.logical_and( |
|
keypoints_info[:, 5, 2:4] > 0.3, |
|
keypoints_info[:, 6, 2:4] > 0.3).astype(int) |
|
new_keypoints_info = np.insert( |
|
keypoints_info, 17, neck, axis=1) |
|
mmpose_idx = [ |
|
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 |
|
] |
|
openpose_idx = [ |
|
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 |
|
] |
|
new_keypoints_info[:, openpose_idx] = \ |
|
new_keypoints_info[:, mmpose_idx] |
|
keypoints_info = new_keypoints_info |
|
|
|
return keypoints_info |
|
|
|
@staticmethod |
|
def format_result(keypoints_info: Optional[np.ndarray]) -> List[HumanPoseResult]: |
|
def format_keypoint_part( |
|
part: np.ndarray, |
|
) -> Optional[List[Optional[Keypoint]]]: |
|
keypoints = [ |
|
Keypoint(x, y, score, i) if score >= 0.3 else None |
|
for i, (x, y, score) in enumerate(part) |
|
] |
|
return ( |
|
None if all(keypoint is None for keypoint in keypoints) else keypoints |
|
) |
|
|
|
def total_score(keypoints: Optional[List[Optional[Keypoint]]]) -> float: |
|
return ( |
|
sum(keypoint.score for keypoint in keypoints if keypoint is not None) |
|
if keypoints is not None |
|
else 0.0 |
|
) |
|
|
|
pose_results = [] |
|
if keypoints_info is None: |
|
return pose_results |
|
|
|
for instance in keypoints_info: |
|
body_keypoints = format_keypoint_part(instance[:18]) or ([None] * 18) |
|
left_hand = format_keypoint_part(instance[92:113]) |
|
right_hand = format_keypoint_part(instance[113:134]) |
|
face = format_keypoint_part(instance[24:92]) |
|
|
|
|
|
|
|
if face is not None: |
|
|
|
face.append(body_keypoints[14]) |
|
|
|
face.append(body_keypoints[15]) |
|
|
|
body = BodyResult( |
|
body_keypoints, total_score(body_keypoints), len(body_keypoints) |
|
) |
|
pose_results.append(HumanPoseResult(body, left_hand, right_hand, face)) |
|
|
|
return pose_results |
|
|