|
import os |
|
from annotator.annotator_path import models_path |
|
from modules import devices |
|
from annotator.uniformer.inference import init_segmentor, inference_segmentor, show_result_pyplot |
|
|
|
try: |
|
from mmseg.core.evaluation import get_palette |
|
except ImportError: |
|
from annotator.mmpkg.mmseg.core.evaluation import get_palette |
|
|
|
modeldir = os.path.join(models_path, "uniformer") |
|
checkpoint_file = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/upernet_global_small.pth" |
|
config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), "upernet_global_small.py") |
|
old_modeldir = os.path.dirname(os.path.realpath(__file__)) |
|
model = None |
|
|
|
def unload_uniformer_model(): |
|
global model |
|
if model is not None: |
|
model = model.cpu() |
|
|
|
def apply_uniformer(img): |
|
global model |
|
if model is None: |
|
modelpath = os.path.join(modeldir, "upernet_global_small.pth") |
|
old_modelpath = os.path.join(old_modeldir, "upernet_global_small.pth") |
|
if os.path.exists(old_modelpath): |
|
modelpath = old_modelpath |
|
elif not os.path.exists(modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(checkpoint_file, model_dir=modeldir) |
|
|
|
model = init_segmentor(config_file, modelpath, device=devices.get_device_for("controlnet")) |
|
model = model.to(devices.get_device_for("controlnet")) |
|
|
|
if devices.get_device_for("controlnet").type == 'mps': |
|
|
|
import torch.nn.functional |
|
|
|
orig_adaptive_avg_pool2d = torch.nn.functional.adaptive_avg_pool2d |
|
def cpu_if_exception(input, *args, **kwargs): |
|
try: |
|
return orig_adaptive_avg_pool2d(input, *args, **kwargs) |
|
except: |
|
return orig_adaptive_avg_pool2d(input.cpu(), *args, **kwargs).to(input.device) |
|
|
|
try: |
|
torch.nn.functional.adaptive_avg_pool2d = cpu_if_exception |
|
result = inference_segmentor(model, img) |
|
finally: |
|
torch.nn.functional.adaptive_avg_pool2d = orig_adaptive_avg_pool2d |
|
else: |
|
result = inference_segmentor(model, img) |
|
|
|
res_img = show_result_pyplot(model, img, result, get_palette('ade'), opacity=1) |
|
return res_img |
|
|