|
import os |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
from einops import rearrange |
|
from .zoedepth.models.zoedepth.zoedepth_v1 import ZoeDepth |
|
from .zoedepth.utils.config import get_config |
|
from modules import devices |
|
from annotator.annotator_path import models_path |
|
|
|
|
|
class ZoeDetector: |
|
model_dir = os.path.join(models_path, "zoedepth") |
|
|
|
def __init__(self): |
|
self.model = None |
|
self.device = devices.get_device_for("controlnet") |
|
|
|
def load_model(self): |
|
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ZoeD_M12_N.pt" |
|
modelpath = os.path.join(self.model_dir, "ZoeD_M12_N.pt") |
|
if not os.path.exists(modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(remote_model_path, model_dir=self.model_dir) |
|
conf = get_config("zoedepth", "infer") |
|
model = ZoeDepth.build_from_config(conf) |
|
model.load_state_dict(torch.load(modelpath, map_location=model.device)['model']) |
|
model.eval() |
|
self.model = model.to(self.device) |
|
|
|
def unload_model(self): |
|
if self.model is not None: |
|
self.model.cpu() |
|
|
|
def __call__(self, input_image): |
|
if self.model is None: |
|
self.load_model() |
|
self.model.to(self.device) |
|
|
|
assert input_image.ndim == 3 |
|
image_depth = input_image |
|
with torch.no_grad(): |
|
image_depth = torch.from_numpy(image_depth).float().to(self.device) |
|
image_depth = image_depth / 255.0 |
|
image_depth = rearrange(image_depth, 'h w c -> 1 c h w') |
|
depth = self.model.infer(image_depth) |
|
|
|
depth = depth[0, 0].cpu().numpy() |
|
|
|
vmin = np.percentile(depth, 2) |
|
vmax = np.percentile(depth, 85) |
|
|
|
depth -= vmin |
|
depth /= vmax - vmin |
|
depth = 1.0 - depth |
|
depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
return depth_image |
|
|