ehristoforu's picture
Upload folder using huggingface_hub
0163a2c verified
raw
history blame
5.2 kB
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
import diffusers #0.21.1 # pylint: disable=import-error
from diffusers.models.attention_processor import Attention
# pylint: disable=protected-access, missing-function-docstring, line-too-long
class SlicedAttnProcessor: # pylint: disable=too-few-public-methods
r"""
Processor for implementing sliced attention.
Args:
slice_size (`int`, *optional*):
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
`attention_head_dim` must be a multiple of the `slice_size`.
"""
def __init__(self, slice_size):
self.slice_size = slice_size
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): # pylint: disable=too-many-statements, too-many-locals, too-many-branches
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
batch_size_attention, query_tokens, shape_three = query.shape
hidden_states = torch.zeros(
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
)
#ARC GPUs can't allocate more than 4GB to a single block, Slice it:
block_multiply = query.element_size()
slice_block_size = self.slice_size * shape_three / 1024 / 1024 * block_multiply
block_size = query_tokens * slice_block_size
split_2_slice_size = query_tokens
if block_size > 4:
do_split_2 = True
#Find something divisible with the query_tokens
while (split_2_slice_size * slice_block_size) > 4:
split_2_slice_size = split_2_slice_size // 2
if split_2_slice_size <= 1:
split_2_slice_size = 1
break
else:
do_split_2 = False
for i in range(batch_size_attention // self.slice_size):
start_idx = i * self.slice_size
end_idx = (i + 1) * self.slice_size
if do_split_2:
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2]
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2]
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2])
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = attn_slice
else:
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def ipex_diffusers():
#ARC GPUs can't allocate more than 4GB to a single block:
diffusers.models.attention_processor.SlicedAttnProcessor = SlicedAttnProcessor