YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

This model was pretrained on the bookcorpus dataset using knowledge distillation.

The particularity of this model is that even though it shares the same architecture as BERT, it has a hidden size of 240. Since it has 12 attention heads, the head size (20) is different from the one of the BERT base model (64).

The knowledge distillation was performed using multiple loss functions.

The weights of the model were initialized from scratch.

PS : the tokenizer is the same as the one of the model bert-base-uncased.

To load the model & tokenizer :

from transformers import AutoModelForMaskedLM, BertTokenizer

model_name = "eli4s/Bert-L12-h240-A12"
model = AutoModelForMaskedLM.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)

To use it as a masked language model :

import torch

sentence = "Let's have a [MASK]."

model.eval()
inputs = tokenizer([sentence], padding='longest', return_tensors='pt')
output = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])

mask_index = inputs['input_ids'].tolist()[0].index(103)
masked_token = output['logits'][0][mask_index].argmax(axis=-1)
predicted_token = tokenizer.decode(masked_token)

print(predicted_token)

Or we can also predict the n most relevant predictions :

top_n = 5

vocab_size = model.config.vocab_size
logits = output['logits'][0][mask_index].tolist()
top_tokens = sorted(list(range(vocab_size)), key=lambda  i:logits[i], reverse=True)[:top_n]

tokenizer.decode(top_tokens)
Downloads last month
17
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.