Bert-L12-h384-A6 / README.md
eli4s's picture
Update README.md
85fb431
|
raw
history blame
1.7 kB

This model was pretrained on the bookcorpus dataset using knowledge distillation.

The particularity of this model is that even though it shares the same architecture as BERT, it has a hidden size of 384 (half the hidden size of BERT) and 6 attention heads (hence the same head size of BERT).

The knowledge distillation was performed using multiple loss functions.

The weights of the model were initialized from scratch.

PS : the tokenizer is the same as the one of the model bert-base-uncased.

** PS2 : I am currently fixing a bug on this model. Do not expect anything from this model until my next update. **

To load the model & tokenizer :

from transformers import AutoModelForMaskedLM, BertTokenizer

model_name = "eli4s/Bert-L12-h384-A6"
model = AutoModelForMaskedLM.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)

To use it on a sentence :

import torch

sentence = "Let's have a [MASK]."

model.eval()
encoded_inputs = tokenizer([sentence], padding='longest')
input_ids = torch.tensor(encoded_inputs['input_ids'])
attention_mask = torch.tensor(encoded_inputs['attention_mask'])
output = model(input_ids, attention_mask=attention_mask)

mask_index = input_ids.tolist()[0].index(103)
masked_token = output['logits'][0][mask_index].argmax(axis=-1)
predicted_token = tokenizer.decode(masked_token)

print(predicted_token)

Or we can also predict the n most relevant predictions :

top_n = 5

vocab_size = model.config.vocab_size
logits = output['logits'][0][mask_index].tolist()
top_tokens = sorted(list(range(vocab_size)), key=lambda  i:logits[i], reverse=True)[:top_n]

tokenizer.decode(top_tokens)