summary_model / README.md
ell11's picture
Training complete
81e9fcd verified
metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
  - summarization
  - generated_from_trainer
datasets:
  - tldr_news
metrics:
  - rouge
model-index:
  - name: summary_model
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: tldr_news
          type: tldr_news
          config: all
          split: test
          args: all
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.21590240799799404

summary_model

This model is a fine-tuned version of facebook/bart-large-cnn on the tldr_news dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9573
  • Rouge1: 0.2159
  • Rouge2: 0.0831
  • Rougel: 0.1829
  • Rougelsum: 0.1869

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.5871 1.0 63 2.7134 0.2176 0.0872 0.1881 0.1951
0.4422 2.0 126 2.9573 0.2159 0.0831 0.1829 0.1869

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0