TinyBERT Sentiment Analysis Model
This is a fine-tuned TinyBERT model for sentiment analysis on the Tripadvisor dataset.
Model Details
- Base Model:
huawei-noah/TinyBERT_General_4L_312D
- Dataset:
nhull/tripadvisor-split-dataset-v2
- Task: Multiclass sentiment analysis (5 classes)
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load the model
tokenizer = AutoTokenizer.from_pretrained("elo4/TinyBERT-sentiment-model")
model = AutoModelForSequenceClassification.from_pretrained("elo4/TinyBERT-sentiment-model")
# Predict sentiment
text = "The hotel was amazing and had great service!"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
predicted_class = outputs.logits.argmax().item()
print(f"Predicted class: {predicted_class}")
Testing results
- Evaluation accuracy: 0.6535
- Precision: 0.635
- Recall: 0.641
- F1 score: 0.636
- Confusion matrix:
| Predicted β | 1 | 2 | 3 | 4 | 5 |
|---------------|------|------|------|------|------|
| Actual β | | | | | |
| 1 (Very Neg.) | 1219 | 318 | 48 | 6 | 9 |
| 2 (Negative) | 432 | 826 | 294 | 32 | 16 |
| 3 (Neutral) | 51 | 306 | 928 | 275 | 40 |
| 4 (Positive) | 3 | 22 | 223 | 833 | 519 |
| 5 (Very Pos.) | 9 | 6 | 16 | 247 | 1322 |
- Downloads last month
- 108
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.
Model tree for elo4/TinyBERT-sentiment-model
Base model
huawei-noah/TinyBERT_General_4L_312D