Edit model card

xlnet-base-cased_fold_2_binary

This model is a fine-tuned version of xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4858
  • F1: 0.7648

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 290 0.4361 0.7404
0.4403 2.0 580 0.5363 0.7515
0.4403 3.0 870 0.4858 0.7648
0.2505 4.0 1160 0.7127 0.7612
0.2505 5.0 1450 0.8930 0.7554
0.1425 6.0 1740 0.9897 0.7580
0.0869 7.0 2030 1.2683 0.7615
0.0869 8.0 2320 1.4988 0.7343
0.0411 9.0 2610 1.5082 0.7492
0.0411 10.0 2900 1.4974 0.7450
0.0306 11.0 3190 1.5723 0.7435
0.0306 12.0 3480 1.8446 0.7432
0.0291 13.0 3770 1.7113 0.7639
0.0207 14.0 4060 1.8073 0.7394
0.0207 15.0 4350 1.7524 0.7585
0.0171 16.0 4640 1.8751 0.7374
0.0171 17.0 4930 1.7849 0.7561
0.0084 18.0 5220 1.8618 0.7441
0.0064 19.0 5510 1.9613 0.7437
0.0064 20.0 5800 1.8898 0.7430
0.006 21.0 6090 1.9889 0.7409
0.006 22.0 6380 1.9949 0.7488
0.0049 23.0 6670 1.9453 0.7488
0.0049 24.0 6960 1.9754 0.7472
0.002 25.0 7250 1.9946 0.7504

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.