metadata
base_model: TaylorAI/bge-micro-v2
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:11863
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
In the fiscal year 2022, the emissions were categorized into different
scopes, with each scope representing a specific source of emissions
sentences:
- >-
Question: What is NetLink proactive in identifying to be more efficient
in?
- >-
What standard is the Environment, Health, and Safety Management System
(EHSMS) audited to by a third-party accredited certification body at the
operational assets level of CLI?
- >-
What do the different scopes represent in terms of emissions in the
fiscal year 2022?
- source_sentence: >-
NetLink is committed to protecting the security of all information and
information systems, including both end-user data and corporate data. To
this end, management ensures that the appropriate IT policies, personal
data protection policy, risk mitigation strategies, cyber security
programmes, systems, processes, and controls are in place to protect our
IT systems and confidential data
sentences:
- '"What recognition did NetLink receive in FY22?"'
- >-
What measures does NetLink have in place to protect the security of all
information and information systems, including end-user data and
corporate data?
- >-
Question: What does Disclosure 102-10 discuss regarding the organization
and its supply chain?
- source_sentence: >-
In the domain of economic performance, the focus is on the financial
health and growth of the organization, ensuring sustainable profitability
and value creation for stakeholders
sentences:
- >-
What does NetLink prioritize by investing in its network to ensure
reliability and quality of infrastructure?
- >-
What percentage of the total energy was accounted for by heat, steam,
and chilled water in 2021 according to the given information?
- >-
What is the focus in the domain of economic performance, ensuring
sustainable profitability and value creation for stakeholders?
- source_sentence: >-
Disclosure 102-41 discusses collective bargaining agreements and is found
on page 98
sentences:
- What topic is discussed in Disclosure 102-41 on page 98 of the document?
- >-
What was the number of cases in 2021, following a decrease from 42 cases
in 2020?
- >-
What type of data does GRI 101 provide in relation to connecting the
nation?
- source_sentence: >-
Employee health and well-being has never been more topical than it was in
the past year. We understand that people around the world, including our
employees, have been increasingly exposed to factors affecting their
physical and mental wellbeing. We are committed to creating an environment
that supports our employees and ensures they feel valued and have a sense
of belonging. We utilised
sentences:
- >-
What aspect of the standard covers the evaluation of the management
approach?
- >-
Question: What is the company's commitment towards its employees' health
and well-being based on the provided context information?
- >-
What types of skills does NetLink focus on developing through their
training and development opportunities for employees?
model-index:
- name: BGE micro v2 ESG
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.7549523729242181
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8991823316193206
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9237123830397033
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9447020146674534
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7549523729242181
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2997274438731068
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1847424766079407
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09447020146674537
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.020970899247894956
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.02497728698942558
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.025658677306658433
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.026241722629651493
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18912117167223944
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8309359566693303
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.023120117824201005
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7496417432352693
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8958105032453848
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9187389361881481
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9417516648402596
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7496417432352693
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2986035010817949
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1837477872376296
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09417516648402599
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.020823381756535267
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.02488362509014959
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.025520526005226342
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.026159768467784998
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.188171652806899
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8261983036492017
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.022991454812532088
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7355643597740875
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8874652280198938
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9105622523813538
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9341650509989041
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7355643597740875
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2958217426732979
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1821124504762708
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09341650509989044
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.02043234332705799
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0246518118894415
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.025293395899482058
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.02594902919441401
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18580500893220617
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8144083444724101
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.022667974495178208
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6972098120205682
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8493635673944196
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8830818511337772
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.913175419371154
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6972098120205682
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28312118913147316
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17661637022675547
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09131754193711542
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.019366939222793565
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.023593432427622775
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.024530051420382712
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.02536598387142095
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1787893349481174
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7792686076088251
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.021712360244980362
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 32
type: dim_32
metrics:
- type: cosine_accuracy@1
value: 0.5974036921520695
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7523392059344179
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7970159318890668
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8448115990896063
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5974036921520695
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25077973531147263
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15940318637781337
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08448115990896064
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.016594547004224157
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.02089831127595606
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.022139331441362976
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.023466988863600182
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.15933281345013575
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6849689711507925
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.019142044257794796
name: Cosine Map@100
BGE micro v2 ESG
This is a sentence-transformers model finetuned from TaylorAI/bge-micro-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: TaylorAI/bge-micro-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("elsayovita/bge-micro-v2-esg-v2")
sentences = [
'Employee health and well-being has never been more topical than it was in the past year. We understand that people around the world, including our employees, have been increasingly exposed to factors affecting their physical and mental wellbeing. We are committed to creating an environment that supports our employees and ensures they feel valued and have a sense of belonging. We utilised',
"Question: What is the company's commitment towards its employees' health and well-being based on the provided context information?",
'What types of skills does NetLink focus on developing through their training and development opportunities for employees?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.755 |
cosine_accuracy@3 |
0.8992 |
cosine_accuracy@5 |
0.9237 |
cosine_accuracy@10 |
0.9447 |
cosine_precision@1 |
0.755 |
cosine_precision@3 |
0.2997 |
cosine_precision@5 |
0.1847 |
cosine_precision@10 |
0.0945 |
cosine_recall@1 |
0.021 |
cosine_recall@3 |
0.025 |
cosine_recall@5 |
0.0257 |
cosine_recall@10 |
0.0262 |
cosine_ndcg@10 |
0.1891 |
cosine_mrr@10 |
0.8309 |
cosine_map@100 |
0.0231 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7496 |
cosine_accuracy@3 |
0.8958 |
cosine_accuracy@5 |
0.9187 |
cosine_accuracy@10 |
0.9418 |
cosine_precision@1 |
0.7496 |
cosine_precision@3 |
0.2986 |
cosine_precision@5 |
0.1837 |
cosine_precision@10 |
0.0942 |
cosine_recall@1 |
0.0208 |
cosine_recall@3 |
0.0249 |
cosine_recall@5 |
0.0255 |
cosine_recall@10 |
0.0262 |
cosine_ndcg@10 |
0.1882 |
cosine_mrr@10 |
0.8262 |
cosine_map@100 |
0.023 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7356 |
cosine_accuracy@3 |
0.8875 |
cosine_accuracy@5 |
0.9106 |
cosine_accuracy@10 |
0.9342 |
cosine_precision@1 |
0.7356 |
cosine_precision@3 |
0.2958 |
cosine_precision@5 |
0.1821 |
cosine_precision@10 |
0.0934 |
cosine_recall@1 |
0.0204 |
cosine_recall@3 |
0.0247 |
cosine_recall@5 |
0.0253 |
cosine_recall@10 |
0.0259 |
cosine_ndcg@10 |
0.1858 |
cosine_mrr@10 |
0.8144 |
cosine_map@100 |
0.0227 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6972 |
cosine_accuracy@3 |
0.8494 |
cosine_accuracy@5 |
0.8831 |
cosine_accuracy@10 |
0.9132 |
cosine_precision@1 |
0.6972 |
cosine_precision@3 |
0.2831 |
cosine_precision@5 |
0.1766 |
cosine_precision@10 |
0.0913 |
cosine_recall@1 |
0.0194 |
cosine_recall@3 |
0.0236 |
cosine_recall@5 |
0.0245 |
cosine_recall@10 |
0.0254 |
cosine_ndcg@10 |
0.1788 |
cosine_mrr@10 |
0.7793 |
cosine_map@100 |
0.0217 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5974 |
cosine_accuracy@3 |
0.7523 |
cosine_accuracy@5 |
0.797 |
cosine_accuracy@10 |
0.8448 |
cosine_precision@1 |
0.5974 |
cosine_precision@3 |
0.2508 |
cosine_precision@5 |
0.1594 |
cosine_precision@10 |
0.0845 |
cosine_recall@1 |
0.0166 |
cosine_recall@3 |
0.0209 |
cosine_recall@5 |
0.0221 |
cosine_recall@10 |
0.0235 |
cosine_ndcg@10 |
0.1593 |
cosine_mrr@10 |
0.685 |
cosine_map@100 |
0.0191 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 11,863 training samples
- Columns:
context
and question
- Approximate statistics based on the first 1000 samples:
|
context |
question |
type |
string |
string |
details |
- min: 13 tokens
- mean: 40.74 tokens
- max: 277 tokens
|
- min: 11 tokens
- mean: 24.4 tokens
- max: 62 tokens
|
- Samples:
context |
question |
The engagement with key stakeholders involves various topics and methods throughout the year |
Question: What does the engagement with key stakeholders involve throughout the year? |
For unitholders and analysts, the focus is on business and operations, the release of financial results, and the overall performance and announcements |
Question: What is the focus for unitholders and analysts in terms of business and operations, financial results, performance, and announcements? |
These are communicated through press releases and other required disclosures via SGXNet and NetLink's website |
What platform is used to communicate press releases and required disclosures for NetLink? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_32_cosine_map@100 |
dim_384_cosine_map@100 |
dim_64_cosine_map@100 |
0.4313 |
10 |
5.2501 |
- |
- |
- |
- |
- |
0.8625 |
20 |
3.4967 |
- |
- |
- |
- |
- |
1.0350 |
24 |
- |
0.0221 |
0.0224 |
0.0185 |
0.0226 |
0.0210 |
1.2264 |
30 |
3.1196 |
- |
- |
- |
- |
- |
1.6577 |
40 |
2.4428 |
- |
- |
- |
- |
- |
2.0458 |
49 |
- |
0.0226 |
0.0229 |
0.0189 |
0.0230 |
0.0215 |
2.0216 |
50 |
2.2222 |
- |
- |
- |
- |
- |
2.4528 |
60 |
2.3441 |
- |
- |
- |
- |
- |
2.8841 |
70 |
2.0096 |
- |
- |
- |
- |
- |
3.0566 |
74 |
- |
0.0227 |
0.0230 |
0.0191 |
0.0231 |
0.0217 |
3.2480 |
80 |
2.3019 |
- |
- |
- |
- |
- |
3.6792 |
90 |
1.9538 |
- |
- |
- |
- |
- |
3.7655 |
92 |
- |
0.0227 |
0.023 |
0.0191 |
0.0231 |
0.0217 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}