emilstabil's picture
End of training
7df7ab2
metadata
license: apache-2.0
base_model: emilstabil/mt5-base_V25775
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: mt5-base_V25775_V44105
    results: []

mt5-base_V25775_V44105

This model is a fine-tuned version of emilstabil/mt5-base_V25775 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1019
  • Rouge1: 30.2631
  • Rouge2: 10.8564
  • Rougel: 20.9297
  • Rougelsum: 24.8312
  • Gen Len: 80.9356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.32 0.81 500 2.1435 28.7386 10.9481 20.3975 23.8195 74.2704
2.2393 1.61 1000 2.1053 29.1856 10.7042 20.4864 24.1221 75.515
2.2124 2.42 1500 2.1157 28.6845 10.9397 20.4075 23.9154 74.8627
2.1635 3.23 2000 2.1232 28.8373 10.8364 20.4743 24.0269 74.1845
2.1148 4.03 2500 2.1149 29.0484 11.0898 20.6711 24.0963 73.9571
2.0904 4.84 3000 2.1101 29.5911 11.2027 20.883 24.3776 76.8412
2.0598 5.65 3500 2.1212 29.5276 10.8551 20.5466 24.1469 78.4506
2.0596 6.45 4000 2.1368 29.8832 10.9578 20.7962 24.4686 80.3777
2.0135 7.26 4500 2.1173 29.5314 10.6881 20.375 24.2483 81.5751
2.0085 8.06 5000 2.1050 29.7932 11.0481 20.8481 24.5598 78.5708
2.0006 8.87 5500 2.1233 30.4225 11.3125 21.1509 24.9171 81.3648
1.9888 9.68 6000 2.1067 29.9013 10.7672 20.6523 24.5878 78.7897
1.9496 10.48 6500 2.1036 29.7453 10.9583 20.7396 24.3824 78.7425
1.9513 11.29 7000 2.1125 29.5484 10.752 20.4861 24.3097 79.0558
1.9476 12.1 7500 2.1014 29.6296 10.8252 20.6412 24.2908 76.1202
1.9294 12.9 8000 2.1102 29.9456 10.9121 20.8077 24.5787 79.515
1.9036 13.71 8500 2.0977 30.1173 10.9352 20.9176 24.9725 80.9056
1.9415 14.52 9000 2.1011 29.9247 10.8223 20.7609 24.6858 81.103
1.8959 15.32 9500 2.0998 29.8002 10.6206 20.5674 24.6966 80.4549
1.9356 16.13 10000 2.1038 30.355 11.0359 21.0347 25.0475 80.8927
1.8958 16.94 10500 2.1029 30.3957 11.0562 21.1067 25.1431 82.1588
1.9093 17.74 11000 2.1002 30.4669 10.9894 20.9725 24.9598 81.1888
1.8969 18.55 11500 2.1045 30.4956 10.9426 20.9578 24.9973 81.824
1.8971 19.35 12000 2.1019 30.2631 10.8564 20.9297 24.8312 80.9356

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3