metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
base_model: t5-small
model-index:
- name: t5-small-finetuned-xsum
results:
- task:
type: text2text-generation
name: Sequence-to-sequence Language Modeling
dataset:
name: xsum
type: xsum
config: default
split: validation
args: default
metrics:
- type: rouge
value: 28.6353
name: Rouge1
t5-small-finetuned-xsum
This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:
- Loss: 2.4499
- Rouge1: 28.6353
- Rouge2: 8.007
- Rougel: 22.5444
- Rougelsum: 22.5477
- Gen Len: 18.8209
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.6885 | 1.0 | 25506 | 2.4499 | 28.6353 | 8.007 | 22.5444 | 22.5477 | 18.8209 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3