FrankenBeagle-SmallOverlap-test

FrankenBeagle-SmallOverlap-test is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
    - model: mlabonne/NeuralBeagle14-7B
      layer_range: [0, 24]
  - sources:
    - model: mlabonne/NeuralBeagle14-7B
      layer_range: [18, 32]
merge_method: passthrough
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "eren23/FrankenBeagle-SmallOverlap-test"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 73.30
AI2 Reasoning Challenge (25-Shot) 72.01
HellaSwag (10-Shot) 88.16
MMLU (5-Shot) 64.71
TruthfulQA (0-shot) 69.69
Winogrande (5-shot) 81.85
GSM8k (5-shot) 63.38
Downloads last month
23
Safetensors
Model size
8.55B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for eren23/FrankenBeagle-SmallOverlap-test

Finetuned
(10)
this model
Quantizations
1 model

Evaluation results