ericflo's picture
Update README.md
a6488e3 verified
|
raw
history blame
3.37 kB
metadata
base_model: meta-llama/Meta-Llama-3.1-405B
library_name: peft
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: Llama-3.1-SyntheticPython-405B-Base-LoRA
    results: []
datasets:
  - ericflo/SyntheticPython-Pretrain-v1
language:
  - en
pipeline_tag: text-generation

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: meta-llama/Meta-Llama-3.1-405B

model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: ericflo/SyntheticPython-Pretrain-v1
    type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/lora-out

hub_model_id: ericflo/Llama-3.1-SyntheticPython-405B-Base-LoRA
hub_strategy: end

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: false

wandb_project: syntheticpython
wandb_entity:
wandb_watch:
wandb_name: llama3.1-405b
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

adapter: qlora
lora_r: 128
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch:
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  pad_token: <|end_of_text|>

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

Llama-3.1-SyntheticPython-405B-Base-LoRA

This model was trained from scratch on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 7
  • total_train_batch_size: 7
  • total_eval_batch_size: 7
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1