See axolotl config
axolotl version: 0.4.1
adapter: qlora
auto_resume_from_checkpoints: true
base_model: furiosa-ai/mlperf-gpt-j-6b
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- b051361718f88ddb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b051361718f88ddb_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/060d3dbf-6ed8-4093-b68f-bc293f1307f5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/b051361718f88ddb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.001
wandb_entity: null
wandb_mode: online
wandb_name: 966d5a5a-e872-4bc8-805b-43448f9e513a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 966d5a5a-e872-4bc8-805b-43448f9e513a
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
060d3dbf-6ed8-4093-b68f-bc293f1307f5
This model is a fine-tuned version of furiosa-ai/mlperf-gpt-j-6b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4625
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0000 | 1 | 4.5361 |
11.7356 | 0.0039 | 100 | 2.8860 |
11.498 | 0.0078 | 200 | 2.7240 |
11.5482 | 0.0116 | 300 | 2.7027 |
11.2156 | 0.0155 | 400 | 2.6278 |
10.884 | 0.0194 | 500 | 2.5724 |
10.8781 | 0.0233 | 600 | 2.5185 |
11.1212 | 0.0272 | 700 | 2.5492 |
10.52 | 0.0310 | 800 | 2.4964 |
11.77 | 0.0349 | 900 | 2.5035 |
9.9839 | 0.0388 | 1000 | 2.4881 |
10.7824 | 0.0427 | 1100 | 2.4743 |
10.2496 | 0.0466 | 1200 | 2.4504 |
10.418 | 0.0504 | 1300 | 2.4633 |
10.3929 | 0.0543 | 1400 | 2.4624 |
10.5461 | 0.0582 | 1500 | 2.4625 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for error577/060d3dbf-6ed8-4093-b68f-bc293f1307f5
Base model
furiosa-ai/mlperf-gpt-j-6b