See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: unsloth/SmolLM-135M-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ebcebb14d0612ac2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ebcebb14d0612ac2_train_data.json
type:
field_instruction: link
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/78e02d3e-8f98-4c6a-b5d5-cf8895e1e778
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 1
mlflow_experiment_name: /tmp/ebcebb14d0612ac2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 20
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.002
wandb_entity: null
wandb_mode: online
wandb_name: f32f4f56-4903-4188-a885-31957e402d25
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f32f4f56-4903-4188-a885-31957e402d25
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
78e02d3e-8f98-4c6a-b5d5-cf8895e1e778
This model is a fine-tuned version of unsloth/SmolLM-135M-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2006
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.9183 | 0.0000 | 1 | 2.7664 |
2.8161 | 0.0004 | 25 | 2.6765 |
2.5902 | 0.0008 | 50 | 2.5414 |
2.467 | 0.0012 | 75 | 2.4589 |
2.4378 | 0.0016 | 100 | 2.3975 |
2.2701 | 0.0020 | 125 | 2.3515 |
2.4121 | 0.0023 | 150 | 2.3166 |
2.2649 | 0.0027 | 175 | 2.2896 |
2.3924 | 0.0031 | 200 | 2.2701 |
2.3039 | 0.0035 | 225 | 2.2538 |
2.3156 | 0.0039 | 250 | 2.2400 |
2.3732 | 0.0043 | 275 | 2.2300 |
2.3055 | 0.0047 | 300 | 2.2209 |
2.2445 | 0.0051 | 325 | 2.2144 |
2.5038 | 0.0055 | 350 | 2.2094 |
2.2085 | 0.0059 | 375 | 2.2060 |
2.0684 | 0.0063 | 400 | 2.2032 |
2.085 | 0.0066 | 425 | 2.2017 |
2.3817 | 0.0070 | 450 | 2.2009 |
2.1274 | 0.0074 | 475 | 2.2008 |
2.3271 | 0.0078 | 500 | 2.2006 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for error577/78e02d3e-8f98-4c6a-b5d5-cf8895e1e778
Base model
HuggingFaceTB/SmolLM-135M
Quantized
HuggingFaceTB/SmolLM-135M-Instruct
Finetuned
unsloth/SmolLM-135M-Instruct