See axolotl config
axolotl version: 0.4.1
adapter: qlora
auto_resume_from_checkpoints: true
base_model: Vikhrmodels/Vikhr-7B-instruct_0.4
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- eab93cbd8a081369_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/eab93cbd8a081369_train_data.json
type:
field_input: info
field_instruction: classical
field_output: modern
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/9b376dea-cf02-48e4-9582-5c0c293e48f1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 1
mlflow_experiment_name: /tmp/eab93cbd8a081369_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0005
wandb_entity: null
wandb_mode: online
wandb_name: a8f4f147-a1f8-43a0-8042-6b029c99bc63
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a8f4f147-a1f8-43a0-8042-6b029c99bc63
warmup_steps: 100
weight_decay: 0.01
xformers_attention: null
9b376dea-cf02-48e4-9582-5c0c293e48f1
This model is a fine-tuned version of Vikhrmodels/Vikhr-7B-instruct_0.4 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9280
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.8857 | 0.0000 | 1 | 4.3076 |
2.7847 | 0.0008 | 50 | 2.4657 |
2.0785 | 0.0016 | 100 | 2.4571 |
2.4357 | 0.0025 | 150 | 2.3172 |
2.2992 | 0.0033 | 200 | 2.2529 |
2.6233 | 0.0041 | 250 | 2.1813 |
1.9701 | 0.0049 | 300 | 2.1299 |
2.2295 | 0.0058 | 350 | 2.1234 |
2.4176 | 0.0066 | 400 | 2.0745 |
2.4644 | 0.0074 | 450 | 2.0456 |
2.051 | 0.0082 | 500 | 2.0536 |
2.8109 | 0.0091 | 550 | 2.0406 |
1.911 | 0.0099 | 600 | 2.0164 |
2.3129 | 0.0107 | 650 | 1.9792 |
1.5766 | 0.0115 | 700 | 1.9626 |
2.246 | 0.0123 | 750 | 1.9866 |
1.9065 | 0.0132 | 800 | 1.9530 |
2.2483 | 0.0140 | 850 | 1.9408 |
2.4119 | 0.0148 | 900 | 1.9647 |
2.3117 | 0.0156 | 950 | 1.9133 |
2.2847 | 0.0165 | 1000 | 1.9454 |
1.8987 | 0.0173 | 1050 | 1.9336 |
1.7661 | 0.0181 | 1100 | 1.9280 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for error577/9b376dea-cf02-48e4-9582-5c0c293e48f1
Base model
Vikhrmodels/Vikhr-7B-instruct_0.4