Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
auto_resume_from_checkpoints: true
base_model: Vikhrmodels/Vikhr-7B-instruct_0.4
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - eab93cbd8a081369_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/eab93cbd8a081369_train_data.json
  type:
    field_input: info
    field_instruction: classical
    field_output: modern
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/9b376dea-cf02-48e4-9582-5c0c293e48f1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 1
mlflow_experiment_name: /tmp/eab93cbd8a081369_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0005
wandb_entity: null
wandb_mode: online
wandb_name: a8f4f147-a1f8-43a0-8042-6b029c99bc63
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a8f4f147-a1f8-43a0-8042-6b029c99bc63
warmup_steps: 100
weight_decay: 0.01
xformers_attention: null

9b376dea-cf02-48e4-9582-5c0c293e48f1

This model is a fine-tuned version of Vikhrmodels/Vikhr-7B-instruct_0.4 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9280

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
3.8857 0.0000 1 4.3076
2.7847 0.0008 50 2.4657
2.0785 0.0016 100 2.4571
2.4357 0.0025 150 2.3172
2.2992 0.0033 200 2.2529
2.6233 0.0041 250 2.1813
1.9701 0.0049 300 2.1299
2.2295 0.0058 350 2.1234
2.4176 0.0066 400 2.0745
2.4644 0.0074 450 2.0456
2.051 0.0082 500 2.0536
2.8109 0.0091 550 2.0406
1.911 0.0099 600 2.0164
2.3129 0.0107 650 1.9792
1.5766 0.0115 700 1.9626
2.246 0.0123 750 1.9866
1.9065 0.0132 800 1.9530
2.2483 0.0140 850 1.9408
2.4119 0.0148 900 1.9647
2.3117 0.0156 950 1.9133
2.2847 0.0165 1000 1.9454
1.8987 0.0173 1050 1.9336
1.7661 0.0181 1100 1.9280

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for error577/9b376dea-cf02-48e4-9582-5c0c293e48f1

Adapter
(229)
this model