librarian-bot's picture
Librarian Bot: Add base_model information to model
3ebda00
|
raw
history blame
2.24 kB
metadata
license: apache-2.0
tags:
  - summarization
  - arabic
  - ar
  - mt5
  - Abstractive Summarization
  - generated_from_trainer
datasets:
  - xlsum
base_model: ahmeddbahaa/mt5-base-finetuned-persian
model-index:
  - name: mt5-base-finetuned-persian-finetuned-persian-arabic
    results: []

mt5-base-finetuned-persian-finetuned-persian-arabic

This model is a fine-tuned version of ahmeddbahaa/mt5-base-finetuned-persian on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3234
  • Rouge-1: 22.96
  • Rouge-2: 10.27
  • Rouge-l: 20.95
  • Gen Len: 19.0
  • Bertscore: 71.59

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Rouge-1 Rouge-2 Rouge-l Gen Len Bertscore
4.2754 1.0 1172 3.5717 19.26 7.26 17.48 19.0 70.49
3.7388 2.0 2344 3.4291 19.71 7.88 17.94 19.0 70.64
3.541 3.0 3516 3.3653 21.18 8.84 19.35 19.0 71.05
3.4113 4.0 4688 3.3306 21.54 9.11 19.65 19.0 71.19
3.3256 5.0 5860 3.3234 21.69 9.22 19.81 19.0 71.31

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1