Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: mistralai/Mistral-Small-24B-Instruct-2501

load_in_8bit: false
load_in_4bit: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true

strict: false

adapter: qlora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.25
lora_target_modules:
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_target_linear: true
peft_layers_to_transform:
loraplus_lr_ratio: 16

chat_template: jinja
chat_template_jinja: "{{- bos_token }}\n\n{%- for message in messages %}\n    {%- if message['role'] == 'system' %}\n        {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n    {%- elif message['role'] == 'user' %}\n        {{- '[INST]' + message['content'] + '[/INST]' }}\n    {%- elif message['role'] == 'assistant' %}\n        {{- message['content'] + eos_token }}\n    {%- else %}\n        {{- raise_exception('Only system, user and assistant roles are supported!') }}\n    {%- endif %}\n{%- endfor %}"
datasets:
  - path: Fizzarolli/inkmix-v2
    type: chat_template
    chat_template: tokenizer_default
    split: train
    field_messages: conversations
    message_field_role: from
    message_field_content: value

dataset_prepared_path: last_run_prepared
#val_set_size: 0.02
output_dir: ./ckpts

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

#wandb_project: teleut-7b-rp
#wandb_entity:
#wandb_watch:
#wandb_name:
#wandb_log_model: checkpoint

# mlflow configuration if you're using it
mlflow_tracking_uri: https://public-tracking.mlflow-e00zzfjq11ky6jcgtv.backbone-e00bgn6e63256prmhq.msp.eu-north1.nebius.cloud
mlflow_experiment_name: real-ms-24b-rp-inkmixv2
mlflow_run_name: v1
hf_mlflow_log_artifacts: true

gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 8e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

#deepspeed: deepspeed_configs/zero3_bf16.json

warmup_steps: 25
#evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 10
debug:
weight_decay: 0.01

ckpts

This model is a fine-tuned version of mistralai/Mistral-Small-24B-Instruct-2501 on the Fizzarolli/inkmix-v2 dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 25
  • num_epochs: 2.0

Training results

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
19
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for estrogen/MS2501-24b-Ink-ep2-adpt