ccsasuke commited on
Commit
6811f45
·
1 Parent(s): 13812cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -4,8 +4,10 @@ tags:
4
  pipeline_tag: feature-extraction
5
  ---
6
  DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON:
7
- Diverse Augmentation Towards Generalizable Dense Retrieval](\url). The associated GitHub repository is available here https://github.com/facebookresearch/dpr-scale/tree/dragon. We use asymmetric dual encoder, with two distinctly parameterized encoders.
8
- The following models are also available:
 
 
9
  Model | Initialization | Query Encoder Path | Context Encoder Path
10
  |---|---|---|---
11
  DRAGON+ | Shitao/RetroMAE| facebook/dragon-plus-query-encoder | facebook/dragon-plus-context-encoder
@@ -35,4 +37,4 @@ ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :]
35
  # Compute similarity scores using dot product
36
  score1 = query_emb @ ctx_emb[0] # 396.5625
37
  score2 = query_emb @ ctx_emb[1] # 393.8340
38
- ```
 
4
  pipeline_tag: feature-extraction
5
  ---
6
  DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON:
7
+ Diverse Augmentation Towards Generalizable Dense Retrieval](https://arxiv.org/abs/2302.07452).
8
+
9
+ The associated GitHub repository is available here https://github.com/facebookresearch/dpr-scale/tree/main/dragon. We use asymmetric dual encoder, with two distinctly parameterized encoders.
10
+
11
  Model | Initialization | Query Encoder Path | Context Encoder Path
12
  |---|---|---|---
13
  DRAGON+ | Shitao/RetroMAE| facebook/dragon-plus-query-encoder | facebook/dragon-plus-context-encoder
 
37
  # Compute similarity scores using dot product
38
  score1 = query_emb @ ctx_emb[0] # 396.5625
39
  score2 = query_emb @ ctx_emb[1] # 393.8340
40
+ ```