xmod-base / README.md
jvamvas's picture
Add lang_id column to table of languages
d15dda2
|
raw
history blame
9.16 kB
---
language:
- multilingual
- af
- am
- ar
- az
- be
- bg
- bn
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- ga
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- si
- sk
- sl
- so
- sq
- sr
- sv
- sw
- ta
- te
- th
- tl
- tr
- uk
- ur
- uz
- vi
- zh
license: mit
---
# xmod-base
X-MOD is a multilingual masked language model trained on filtered CommonCrawl data containing 81 languages. It was introduced in the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) (Pfeiffer et al., NAACL 2022) and first released in [this repository](https://github.com/facebookresearch/fairseq/tree/main/examples/xmod).
Because it has been pre-trained with language-specific modular components (_language adapters_), X-MOD differs from previous multilingual models like [XLM-R](https://huggingface.co/xlm-roberta-base). For fine-tuning, the language adapters in each transformer layer are frozen.
# Usage
## Tokenizer
This model reuses the tokenizer of [XLM-R](https://huggingface.co/xlm-roberta-base), so you can load the tokenizer as follows:
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
```
## Input Language
Because this model uses language adapters, you need to specify the language of your input so that the correct adapter can be activated:
```python
from transformers import XMODModel
model = XMODModel.from_pretrained("jvamvas/xmod-base")
model.set_default_language("en_XX")
```
A directory of the language adapters in this model is found at the bottom of this model card.
## Fine-tuning
The paper recommends that the embedding layer and the language adapters are frozen during fine-tuning. A method for doing this is provided in the code:
```python
model.freeze_embeddings_and_language_adapters()
# Fine-tune the model ...
```
## Cross-lingual Transfer
After fine-tuning, zero-shot cross-lingual transfer can be tested by activating the language adapter of the target language:
```python
model.set_default_language("de_DE")
# Evaluate the model on German examples ...
```
# Bias, Risks, and Limitations
Please refer to the model card of [XLM-R](https://huggingface.co/xlm-roberta-base), because X-MOD has a similar architecture and has been trained on similar training data.
# Citation
**BibTeX:**
```bibtex
@inproceedings{pfeiffer-etal-2022-lifting,
title = "Lifting the Curse of Multilinguality by Pre-training Modular Transformers",
author = "Pfeiffer, Jonas and
Goyal, Naman and
Lin, Xi and
Li, Xian and
Cross, James and
Riedel, Sebastian and
Artetxe, Mikel",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.255",
doi = "10.18653/v1/2022.naacl-main.255",
pages = "3479--3495"
}
```
# Languages
This model contains the following language adapters:
| lang_id (Adapter index) | Language code | Language |
|-------------------------|---------------|-----------------------|
| 0 | en_XX | English |
| 1 | id_ID | Indonesian |
| 2 | vi_VN | Vietnamese |
| 3 | ru_RU | Russian |
| 4 | fa_IR | Persian |
| 5 | sv_SE | Swedish |
| 6 | ja_XX | Japanese |
| 7 | fr_XX | French |
| 8 | de_DE | German |
| 9 | ro_RO | Romanian |
| 10 | ko_KR | Korean |
| 11 | hu_HU | Hungarian |
| 12 | es_XX | Spanish |
| 13 | fi_FI | Finnish |
| 14 | uk_UA | Ukrainian |
| 15 | da_DK | Danish |
| 16 | pt_XX | Portuguese |
| 17 | no_XX | Norwegian |
| 18 | th_TH | Thai |
| 19 | pl_PL | Polish |
| 20 | bg_BG | Bulgarian |
| 21 | nl_XX | Dutch |
| 22 | zh_CN | Chinese (simplified) |
| 23 | he_IL | Hebrew |
| 24 | el_GR | Greek |
| 25 | it_IT | Italian |
| 26 | sk_SK | Slovak |
| 27 | hr_HR | Croatian |
| 28 | tr_TR | Turkish |
| 29 | ar_AR | Arabic |
| 30 | cs_CZ | Czech |
| 31 | lt_LT | Lithuanian |
| 32 | hi_IN | Hindi |
| 33 | zh_TW | Chinese (traditional) |
| 34 | ca_ES | Catalan |
| 35 | ms_MY | Malay |
| 36 | sl_SI | Slovenian |
| 37 | lv_LV | Latvian |
| 38 | ta_IN | Tamil |
| 39 | bn_IN | Bengali |
| 40 | et_EE | Estonian |
| 41 | az_AZ | Azerbaijani |
| 42 | sq_AL | Albanian |
| 43 | sr_RS | Serbian |
| 44 | kk_KZ | Kazakh |
| 45 | ka_GE | Georgian |
| 46 | tl_XX | Tagalog |
| 47 | ur_PK | Urdu |
| 48 | is_IS | Icelandic |
| 49 | hy_AM | Armenian |
| 50 | ml_IN | Malayalam |
| 51 | mk_MK | Macedonian |
| 52 | be_BY | Belarusian |
| 53 | la_VA | Latin |
| 54 | te_IN | Telugu |
| 55 | eu_ES | Basque |
| 56 | gl_ES | Galician |
| 57 | mn_MN | Mongolian |
| 58 | kn_IN | Kannada |
| 59 | ne_NP | Nepali |
| 60 | sw_KE | Swahili |
| 61 | si_LK | Sinhala |
| 62 | mr_IN | Marathi |
| 63 | af_ZA | Afrikaans |
| 64 | gu_IN | Gujarati |
| 65 | cy_GB | Welsh |
| 66 | eo_EO | Esperanto |
| 67 | km_KH | Central Khmer |
| 68 | ky_KG | Kirghiz |
| 69 | uz_UZ | Uzbek |
| 70 | ps_AF | Pashto |
| 71 | pa_IN | Punjabi |
| 72 | ga_IE | Irish |
| 73 | ha_NG | Hausa |
| 74 | am_ET | Amharic |
| 75 | lo_LA | Lao |
| 76 | ku_TR | Kurdish |
| 77 | so_SO | Somali |
| 78 | my_MM | Burmese |
| 79 | or_IN | Oriya |
| 80 | sa_IN | Sanskrit |