distilbert-fr-explorer-mlm

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6345

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 65
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.8566 1.0 611 2.5339
2.5167 2.0 1222 2.3487
2.3456 3.0 1833 2.2150
2.2457 4.0 2444 2.1290
2.1817 5.0 3055 2.0981
2.1236 6.0 3666 2.0542
2.0782 7.0 4277 2.0002
2.0448 8.0 4888 1.9860
1.9967 9.0 5499 1.9708
1.9806 10.0 6110 1.9546
1.9358 11.0 6721 1.9269
1.9166 12.0 7332 1.8638
1.8908 13.0 7943 1.8710
1.8716 14.0 8554 1.8679
1.8515 15.0 9165 1.8462
1.8233 16.0 9776 1.8517
1.813 17.0 10387 1.8010
1.7974 18.0 10998 1.8096
1.7827 19.0 11609 1.8032
1.7693 20.0 12220 1.7867
1.7494 21.0 12831 1.7882
1.7417 22.0 13442 1.7830
1.7252 23.0 14053 1.7942
1.7041 24.0 14664 1.7697
1.6983 25.0 15275 1.7566
1.6817 26.0 15886 1.7391
1.6803 27.0 16497 1.7389
1.6689 28.0 17108 1.7165
1.6558 29.0 17719 1.7475
1.6523 30.0 18330 1.7136
1.6387 31.0 18941 1.7033
1.6352 32.0 19552 1.7056
1.6221 33.0 20163 1.6910
1.6051 34.0 20774 1.6908
1.6083 35.0 21385 1.6688
1.6011 36.0 21996 1.6876
1.5903 37.0 22607 1.6900
1.5896 38.0 23218 1.6942
1.5772 39.0 23829 1.6957
1.5731 40.0 24440 1.6805
1.5727 41.0 25051 1.6717
1.566 42.0 25662 1.6848
1.5588 43.0 26273 1.6788
1.5549 44.0 26884 1.6919
1.5444 45.0 27495 1.6610
1.5372 46.0 28106 1.6602
1.5426 47.0 28717 1.6669
1.5262 48.0 29328 1.6666
1.5287 49.0 29939 1.6461
1.5241 50.0 30550 1.6612
1.5257 51.0 31161 1.6447
1.522 52.0 31772 1.6483
1.5153 53.0 32383 1.6350
1.5066 54.0 32994 1.6592
1.5119 55.0 33605 1.6635
1.5029 56.0 34216 1.6375
1.5017 57.0 34827 1.6346
1.5052 58.0 35438 1.6257
1.4952 59.0 36049 1.6452
1.5043 60.0 36660 1.6417
1.5018 61.0 37271 1.6203
1.492 62.0 37882 1.6358
1.4955 63.0 38493 1.6450
1.5017 64.0 39104 1.6373
1.4972 65.0 39715 1.6345

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.