|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swinv2-base-patch4-window12-192-22k |
|
tags: |
|
- image-classification |
|
- vision |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: SWIN_finetuned_frozen_v4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SWIN_finetuned_frozen_v4 |
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window12-192-22k](https://huggingface.co/microsoft/swinv2-base-patch4-window12-192-22k) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0700 |
|
- Accuracy: 0.7085 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:--------:|:---------------:| |
|
| 1.3057 | 1.0 | 5249 | 0.5822 | 2.0464 | |
|
| 1.1387 | 2.0 | 10498 | 0.6084 | 1.9457 | |
|
| 0.988 | 3.0 | 15747 | 0.6124 | 1.9650 | |
|
| 0.8653 | 4.0 | 20996 | 0.6344 | 1.9381 | |
|
| 0.7662 | 5.0 | 26245 | 0.6335 | 1.9391 | |
|
| 0.6882 | 6.0 | 31494 | 0.6444 | 1.9591 | |
|
| 0.601 | 7.0 | 36743 | 0.6510 | 1.9506 | |
|
| 0.5363 | 8.0 | 41992 | 0.6617 | 1.9556 | |
|
| 0.4871 | 9.0 | 47241 | 0.6741 | 1.9037 | |
|
| 0.4338 | 10.0 | 52490 | 0.6806 | 1.9794 | |
|
| 0.3738 | 11.0 | 57739 | 0.6849 | 2.0053 | |
|
| 0.3338 | 12.0 | 62988 | 0.6955 | 2.0140 | |
|
| 0.2989 | 13.0 | 68237 | 0.6974 | 2.0830 | |
|
| 0.267 | 14.0 | 73486 | 0.7041 | 2.0824 | |
|
| 0.236 | 15.0 | 78735 | 0.7085 | 2.0700 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.13.3 |
|
|