metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- precision
- recall
model-index:
- name: finetuned-sentiment-analysis-model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.909
- name: Precision
type: precision
value: 0.8899803536345776
- name: Recall
type: recall
value: 0.9282786885245902
finetuned-sentiment-analysis-model
This model is a fine-tuned version of distilbert-base-uncased on the imdb dataset. It achieves the following results on the evaluation set:
- Loss: 0.2868
- Accuracy: 0.909
- Precision: 0.8900
- Recall: 0.9283
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3