See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 95df966ebd54953c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/95df966ebd54953c_train_data.json
type:
field_input: "\uBCF8\uBB38"
field_instruction: "\uC81C\uBAA9"
field_output: "\uCE74\uD14C\uACE0\uB9AC"
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: fedovtt/46625f8a-0583-4960-ad89-42556bb00d0c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/95df966ebd54953c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 5
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 46625f8a-0583-4960-ad89-42556bb00d0c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 46625f8a-0583-4960-ad89-42556bb00d0c
warmup_steps: 5
weight_decay: 0.1
xformers_attention: true
46625f8a-0583-4960-ad89-42556bb00d0c
This model is a fine-tuned version of WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2080
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.1042 | 0.0001 | 1 | 7.1512 |
7.5328 | 0.0003 | 3 | 7.0207 |
6.0895 | 0.0005 | 6 | 4.5371 |
1.8198 | 0.0008 | 9 | 1.1247 |
0.3309 | 0.0010 | 12 | 0.4181 |
0.231 | 0.0013 | 15 | 0.2874 |
0.0864 | 0.0015 | 18 | 0.2430 |
0.1357 | 0.0018 | 21 | 0.2168 |
0.1002 | 0.0020 | 24 | 0.2080 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.