See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen1.5-14B-Chat
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 40dae4fa66209106_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/40dae4fa66209106_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: fedovtt/cbfac782-ac5f-4fc9-aa30-6e57df63d773
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 78GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/40dae4fa66209106_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 829bf80f-718f-42d6-9eb3-f0195f1b690b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 829bf80f-718f-42d6-9eb3-f0195f1b690b
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true
cbfac782-ac5f-4fc9-aa30-6e57df63d773
This model is a fine-tuned version of Qwen/Qwen1.5-14B-Chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8008
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 2.2491 |
2.2336 | 0.0011 | 5 | 2.1518 |
2.0395 | 0.0021 | 10 | 2.0262 |
1.8766 | 0.0032 | 15 | 1.9062 |
1.9025 | 0.0042 | 20 | 1.8435 |
1.9373 | 0.0053 | 25 | 1.8084 |
1.8405 | 0.0063 | 30 | 1.8008 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for fedovtt/cbfac782-ac5f-4fc9-aa30-6e57df63d773
Base model
Qwen/Qwen1.5-14B-Chat